Unsupervised writer adaptation applied to handwritten text recognition
نویسندگان
چکیده
This paper deals with the problem of o3-line handwritten text recognition. It presents a system of text recognition that exploits an original principle of adaptation to the handwriting to be recognized. The adaptation principle is based on the automatic learning, during the recognition, of the graphical characteristics of the handwriting. This on-line adaptation of the recognition system relies on the iteration of two steps: a word recognition step that allows to label the writer’s representations (allographs) on the whole text and a re-evaluation step of character models. Tests carried out on a sample of 15 writers, all unknown by the system, show the interest of the proposed adaptation scheme since we obtain during iterations an improvement of recognition rates both at the letter and the word levels. ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Handwritten text recognition through writer adaptation
Handwritten text recognition is a problem rarely studied out of specific applications for which lexical knowledge can constrain the vocabulary to a limited one. In the case of handwritten text recognition, additional information can be exploited to characterize the specificity of the writing. This knowledge can help the recognition system to find coherent solutions from both the lexical and the...
متن کاملPrototype Integration in Off-line Handwriting Recognition Adaptation
Writer adaptation or specialization is the adjustment of handwriting recognition algorithms to a specific writer’s style of handwriting. Such adjustment yields significantly improved recognition rates over counterpart general recognition algorithms. We present a discussion of a method of prototype integration for writer adaptation and evaluate the results on English and Arabic datasets. The wri...
متن کاملWriter Identification Using an HMM-Based Handwriting Recognition System: To Normalize the Input or Not?
A system for writer identification based on handwritten text lines is described in this paper. The system uses Hidden Markov Model based recognizers which are designed for text line recognition. Features are extracted from a text line and used to train the recognizers. Prior to feature extraction, normalization operations are applied to a text line. On the one hand, there exists a strong correl...
متن کاملRecognition of Handwritten Historical Documents: HMM-Adaptation vs. Writer Specific Training
In this paper we propose a recognition system for handwritten manuscripts by writers of the 20th century. The proposed system first applies some preprocessing steps to remove background noise. Next the pages are segmented into individual text lines. After normalization a hidden Markov model based recognizer, supported by a language model, is applied to each text line. In our experiments we inve...
متن کاملAllograph Based Writer Adaptation for Handwritten Character Recognition
Writer adaptation is the process of converting a generic (writer-independent) handwriting recognizer into a personalized (writer-dependent) recognizer with improved accuracy for a particular user. While training the generic recognizer uses large amounts of data from several writers, the adaptation process uses only a few samples from a single user. In this paper we present a) an automatic appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 37 شماره
صفحات -
تاریخ انتشار 2004