Dilated Recurrent Neural Networks
نویسندگان
چکیده
Notoriously, learning with recurrent neural networks (RNNs) on long sequences is a difficult task. There are three major challenges: 1) extracting complex dependencies, 2) vanishing and exploding gradients, and 3) efficient parallelization. In this paper, we introduce a simple yet effective RNN connection structure, the DILATEDRNN, which simultaneously tackles all these challenges. The proposed architecture is characterized by multi-resolution dilated recurrent skip connections, and can be combined flexibly with different RNN cells. Moreover, the DILATEDRNN reduces the number of parameters and enhances training efficiency significantly, while matching state-of-the-art performance (even with Vanilla RNN cells) in tasks involving very long-term dependencies. To provide a theory-based quantification of the architecture’s advantages, we introduce a memory capacity measure the mean recurrent length, which is more suitable for RNNs with long skip connections than existing measures. We rigorously prove the advantages of the DILATEDRNN over other recurrent neural architectures.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملWaveform Modeling Using Stacked Dilated Convolutional Neural Networks for Speech Bandwidth Extension
This paper presents a waveform modeling and generation method for speech bandwidth extension (BWE) using stacked dilated convolutional neural networks (CNNs) with causal or non-causal convolutional layers. Such dilated CNNs describe the predictive distribution for each wideband or high-frequency speech sample conditioned on the input narrowband speech samples. Distinguished from conventional fr...
متن کاملDilated Convolutions for Modeling Long-Distance Genomic Dependencies
We consider the task of detecting regulatory elements in the human genome directly from raw DNA. Past work has focused on small snippets of DNA, making it difficult to model long-distance dependencies that arise from DNA’s 3-dimensional conformation. In order to study long-distance dependencies, we develop and release a novel dataset for a larger-context modeling task. Using this new data set w...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017