Ground fluidization promotes rapid running of a lightweight robot
نویسندگان
چکیده
We study the locomotor mechanics of a small, lightweight robot (DynaRoACH, 10 cm, 25 g) which can move on a granular substrate of 3 mm diameter glass particles at speeds up to 5 body length/s, approaching the performance of certain desert-dwelling animals. To reveal how the robot achieves this performance, we used high-speed imaging to capture its kinematics, and developed a numerical multi-body simulation of the robot coupled to an experimentally validated simulation of the granular medium. Average speeds measured in experiment and simulation agreed well, and increased nonlinearly with stride frequency, reflecting a change in propulsion mode. At low frequencies, the robot used a quasistatic “rotary walking” mode, in which the substrate yielded as legs penetrated and then solidified once vertical force balance was achieved. At high frequencies the robot propelled itself using the speed-dependent fluid-like inertial response of the material. The simulation allows variation of parameters which are inconvenient to modify in experiment, and thus gives insight into how substrate and robot properties change performance. Our study reveals how lightweight animals can achieve high performance on granular substrates; such insights can advance the design and control of robots in deformable terrains.
منابع مشابه
Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملCooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station
The power, size, and weight constraints of micro air vehicles (MAVs) limit their on-board sensing and computational resources. Ground vehicles have less mobility than MAVs, but relaxed size constraints, and typically more computing power. These specializations present many opportunities for robot-robot cooperation. In this work, we demonstrate cooperative target-seeking between a 13 gram ornith...
متن کاملInteractive robogami: An end-to-end system for design of robots with ground locomotion
This paper aims to democratize the design and fabrication of robots, enabling people of all skill levels to make robots without needing expert domain knowledge. Existing work in computational design and rapid fabrication has explored this question of customization for physical objects but so far has not been able to conquer the complexity of robot designs. We have developed Interactive Robogami...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملPrinciples of appendage design in robots and animals determining terradynamic performance on flowable ground.
Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control technique by which the penetration resistance of a dry granular substrate could be widely and rapidly varied. The approach was embodied in a device co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 32 شماره
صفحات -
تاریخ انتشار 2013