Unbiased sampling of network ensembles
نویسندگان
چکیده
Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. A key requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that exactly match the enforced constraints. Unfortunately, when applied to strongly heterogeneous networks (including most real-world graphs), the majority of these approaches become biased and/or time-consuming. Moreover, the algorithms defined in the simplest cases (such as binary graphs with given degrees) are not easily generalizable to more complicated ensembles. Here we propose a solution to the problem via the introduction of a ‘maximize-and-sample’ (‘Max & Sam’) method to correctly sample ensembles of networks where the constraints are ‘soft’ i.e. they are realized as ensemble averages. Being based on exact maximumentropy distributions, our approach is unbiased by construction, even for strongly heterogeneous networks. It is also more computationally efficient than most microcanonical alternatives. Finally, it works for both binary and weighted networks with a variety of constraints, including combined degree-strengths sequences and full reciprocity structure, for which no alternative method exists. Our method can also be turned into a microcanonical one, via a restriction to the relevant subset. We show various applications to real-world networks and provide a code implementing all our algorithms.
منابع مشابه
Pii: S0893-6080(99)00073-8
This paper presents a learning approach, i.e. negative correlation learning, for neural network ensembles. Unlike previous learning approaches for neural network ensembles, negative correlation learning attempts to train individual networks in an ensemble and combines them in the same learning process. In negative correlation learning, all the individual networks in the ensemble are trained sim...
متن کاملFficient Variational B Ayesian Neural Net - Work Ensembles for Outlier Detection
In this work we perform outlier detection using ensembles of neural networks obtained by variational approximation of the posterior in a Bayesian neural network setting. The variational parameters are obtained by sampling from the true posterior by gradient descent. We show our outlier detection results are comparable to those obtained using other efficient ensembling methods.
متن کاملEfficient variational Bayesian neural network ensembles for outlier detection
In this work we perform outlier detection using ensembles of neural networks obtained by variational approximation of the posterior in a Bayesian neural network setting. The variational parameters are obtained by sampling from the true posterior by gradient descent. We show our outlier detection results are comparable to those obtained using other efficient ensembling methods.
متن کاملModel Clustering for Neural Network Ensembles
We show that large ensembles of (neural network) models, obtained e.g. in bootstrapping or sampling from (Bayesian) probability distributions, can be effectively summarized by a relatively small number of representative models. We present a method to find representative models through clustering based on the models’ outputs on a data set. We apply the method on models obtained through bootstrap...
متن کاملMultiensemble Markov models of molecular thermodynamics and kinetics.
We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1406.1197 شماره
صفحات -
تاریخ انتشار 2014