Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
نویسندگان
چکیده
We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space—if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher’s Linear Discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The Eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed “Fisherface” method has error rates that are lower than those of the Eigenface technique for tests on the Harvard and Yale Face Databases.
منابع مشابه
Face recognition using nonparametric-weighted Fisherfaces
This study presents an appearance-based face recognition scheme called the nonparametric-weighted Fisherfaces (NW-Fisherfaces). Pixels in a facial image are considered as coordinates in a high-dimensional space and are transformed into a face subspace for analysis by using nonparametric-weighted feature extraction (NWFE). According to previous studies of hyperspectral image classification, NWFE...
متن کاملEigenfaces vs . Fisherfaces : Recognition Using Class Speci c Linear Projection
We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classi cation approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but xed pose, lie in a 3-D linear subspace of the...
متن کاملGabor feature based classification using the enhanced fisher linear discriminant model for face recognition
This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from 1) the derivation of an augmen...
متن کاملA Unified Bayesian Framework for Face Recognition
This paper introduces a Bayesian framework for face recognition which unifies popular methods such as the eigenfaces and Fisherfaces and can generate two novel probabilistic reasoning models (PRM) with enhanced performance. The Bayesian framework first applies Principal Component Analysis (PCA) for dimensionality reduction with the resulting image representation enjoying noise reduction and enh...
متن کاملA Direct Evolutionary Feature Extraction Algorithm for Classifying High Dimensional Data
Among various feature extraction algorithms, those based on genetic algorithms are promising owing to their potential parallelizability and possible applications in large scale and high dimensional data classification. However, existing genetic algorithm based feature extraction algorithms are either limited in searching optimal projection basis vectors or costly in both time and space complexi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 19 شماره
صفحات -
تاریخ انتشار 1996