On Convergent Interpolatory Subdivision Schemes in Riemannian Geometry
نویسنده
چکیده
We show the convergence (for all input data) of refinement rules in Riemannian manifolds which are analogous to the linear four-point scheme and similar univariate interpolatory schemes, and which are generalized to the Riemannian setting by the so-called log/exp analogy. For this purpose we use a lemma on the Hölder regularity of limits of contractive refinement schemes in metric spaces. In combination with earlier results on smoothness of limits we settle the question of existence of interpolatory refinement rules intrinsic to Riemannian geometry which have C limits for all input data, for r ≤ 3. We further establish well-definedness of the reconstruction procedure of “interpolatory” multiscale transforms intrinsic to Riemannian geometry.
منابع مشابه
Adaptive geometry compression based on 4-point interpolatory subdivision schemes with labels
We propose an adaptive geometry compression method with labels based on 4-point interpolatory subdivision schemes. It can work on digital curves of arbitrary dimensions. With the geometry compression method, a digital curve is adaptively compressed into several segments with different compression levels. Each segment is a 4-point subdivision curve with a subdivision step. Labels are recorded in...
متن کاملAdaptive Geometry Compression Based on 4-Point Interpolatory Subdivision Schemes
We propose an adaptive geometry compression method based on 4-point interpolatory subdivision schemes. It can work on digital curves of arbitrary dimensions. With the geometry compression method, a digital curve is adaptively compressed into several segments with different compression levels. Each segment is a 4-point subdivision curve with a subdivision step. In the meantime, we provide high-s...
متن کاملFace-based Hermite Subdivision Schemes
Interpolatory and non-interpolatory multivariate Hermite type subdivision schemes are introduced in [8, 7]. In their applications in free-form surfaces, symmetry properties play a fundamental role: one can essentially argue that a subdivision scheme without a symmetry property simply cannot be used for the purpose of modelling free-form surfaces. The symmetry properties defined in the article [...
متن کاملInterpolatory quad/triangle subdivision schemes for surface design
Recently the study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control net consisting of both quads and triangles and produces finer and finer meshes with quads and triangles. The use of the quad/triangle structure for surface design is motivated by the fact that in CAD modelling, the designers often want to model c...
متن کاملInterpolatory Wavelets for Manifold-valued Data
Geometric wavelet-like transforms for univariate and multivariate manifold-valued data can be constructed by means of nonlinear stationary subdivision rules which are intrinsic to the geometry under consideration. We show that in an appropriate vector bundle setting for a general class of interpolatory wavelet transforms, which applies to Riemannian geometry, Lie groups and other geometries, Hö...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014