Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings.
نویسندگان
چکیده
Combined analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has the potential to provide higher spatiotemporal resolution than either method alone. In some situations, in which the activity of interest cannot be reliably reproduced (e.g., epilepsy, learning, sleep states), accurate combined analysis requires simultaneous acquisition of EEG and fMRI. Simultaneous measurements ensure that the EEG and fMRI recordings reflect the exact same brain activity state. We took advantage of the spatial filtering properties of the bipolar montage to allow recording of very short (125--250 ms) visual-evoked potentials (VEPs) during fMRI. These EEG and fMRI measurements are of sufficient quality to allow source localization of the cortical generators. In addition, our source localization approach provides a combined EEG/fMRI analysis that does not require any manual selection of fMRI activations or placement of source dipoles. The source of the VEP was found to be located in the occipital cortex. Separate analysis of EEG and fMRI data demonstrated good spatial overlap of the observed activated sites. As expected, the combined EEG/fMRI analysis provided better spatiotemporal resolution than either approach alone. The resulting spatiotemporal movie allows for the millisecond-to-millisecond display of changes in cortical activity caused by visual stimulation. These data reveal two peaks in activity corresponding to the N75 and the P100 components. This type of simultaneous acquisition and analysis allows for the accurate characterization of the location and timing of neurophysiological activity in the human brain.
منابع مشابه
Single-epoch analysis of interleaved evoked potentials and fMRI responses during steady-state visual stimulation.
OBJECTIVE Aim of the study was to record BOLD-fMRI interleaved with evoked potentials for single-epochs of visual stimulation and to investigate the possible relationship between these two measures. METHODS Sparse recording of fMRI and EEG allowed us to measure BOLD responses and evoked potentials on an epoch-by-epoch basis. To obtain robust estimates of evoked potentials, we used blocks of c...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملEstimating repetitive spatiotemporal patterns from resting-state brain activity data
Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 13 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2001