Identification of hydrogen peroxide production-related genes in Streptococcus sanguinis and their functional relationship with pyruvate oxidase
نویسندگان
چکیده
Hydrogen peroxide (H(2)O(2)), an important substance produced by many members of the genus Streptococcus, plays important roles in virulence and antagonism within a microbial community such as oral biofilms. The spxB gene, which encodes pyruvate oxidase, is involved in H(2)O(2) production in many streptococcal species. However, knowledge about its regulation and relation with other genes putatively involved in the same pathway is limited. In this study, three genes--ackA, spxR and tpk--were identified as contributing to H(2)O(2) production in Streptococcus sanguinis by screening mutants for opaque colony appearance. Mutations in all three genes resulted in significant decreases in H(2)O(2) production, with 16-31% of that of the wild-type. H(2)O(2) production was restored in the complemented strains. Antagonism against Streptococcus mutans by these three S. sanguinis mutants was reduced, both on plates and in liquid cultures, indicating the critical roles of these three genes for conferring the competitive advantage of S. sanguinis. Analysis by qPCR indicated that the expression of spxB was decreased in the ackA and spxR mutants and significantly increased in the tpk mutant.
منابع مشابه
Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii.
Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H(2)O(2)). Surprisingly, S. sanguinis and S. gordonii cell int...
متن کاملHydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci
Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting ...
متن کاملStreptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide
Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibi...
متن کاملSpxA1 Involved in Hydrogen Peroxide Production, Stress Tolerance and Endocarditis Virulence in Streptococcus sanguinis
Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H(2)O(2)) production, and reduced antagoni...
متن کاملStreptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans.
Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 157 شماره
صفحات -
تاریخ انتشار 2011