Feature Weighting for Improving Document Image Retrieval System Performance

نویسندگان

  • Mohammad Reza Keyvanpour
  • Reza Tavoli
چکیده

Feature weighting is a technique used to approximate the optimal degree of influence of individual features. This paper presents a feature weighting method for Document Image Retrieval System (DIRS) based on keyword spotting. In this method, we weight the feature using coefficient of multiple correlations. Coefficient of multiple correlations can be used to describe the synthesized effects and correlation of each feature. The aim of this paper is to show that feature weighting increases the performance of DIRS. After applying the feature weighting method to DIRS the average precision is 93.23% and average recall become 98.66% respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

Document Analysis And Classification Based On Passing Window

In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...

متن کامل

DEMIR at ImageCLEFwiki 2011: Evaluating Different Weighting Schemes in Information Retrieval

This paper present the participation details of DEMIR (Dokuz Eylul University Multimedia Information Retrieval) research team at ImageCLEFwiki2011. This year we investigate on evaluating of different weighting models on text retrieval performance. In the case of low-level feature selection, we extracted different features and examined their performance to choose the proper feature for our exper...

متن کامل

Improving Spamdexing Detection Via a Two-Stage Classification Strategy

p. 1 Exploring the Stability of IDF Term Weighting p. 10 Completely-Arbitrary Passage Retrieval in Language Modeling Approach p. 22 Semantic Discriminative Projections for Image Retrieval p. 34 Comparing Dissimilarity Measures for Content-Based Image Retrieval p. 44 A Semantic Content-Based Retrieval Method for Histopathology Images p. 51 Integrating Background Knowledge into RBF Networks for T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1206.1291  شماره 

صفحات  -

تاریخ انتشار 2012