AppleSeed: A Parallel Macintosh Cluster for Scientific Computing
نویسندگان
چکیده
We have constructed a parallel cluster consisting of Apple Macintosh G4 computers running both Classic Mac OS as well as the Unix-based Mac OS X, and have achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. Unlike other Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the mainstream of computing.
منابع مشابه
"Plug-and-Play" Cluster Computing Using Mac OS X
At UCLA's Plasma Physics Group, to achieve accessible computational power for our research goals, we developed the tools to build numerically-intensive parallel computing clusters on the Macintosh platform. Our technology maximizes productivity because it is designed to allow the user, without expertise in the operating system, to most efficiently develop and run parallel code, enabling the mos...
متن کاملPlasma Physics Calculations on a Parallel Macintosh Cluster
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintos...
متن کاملParallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کامل"Plug-and-Play" Cluster Computing HPC Designed for the Mainstream Scientist
At UCLA's Plasma Physics Group, to achieve accessible computational power for our research goals, we developed the tools to build numerically-intensive parallel computing clusters on the Macintosh platform. Our approach is designed to allow the user, without expertise in the operating system, to most efficiently develop and run parallel code, enabling the most effective advancement of scientifi...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003