Lifetime-Based Memory Management for Distributed Data Processing Systems
نویسندگان
چکیده
In-memory caching of intermediate data and eager combining of data in shuffle buffers have been shown to be very effective in minimizing the re-computation and I/O cost in distributed data processing systems like Spark and Flink. However, it has also been widely reported that these techniques would create a large amount of long-living data objects in the heap, which may quickly saturate the garbage collector, especially when handling a large dataset, and hence would limit the scalability of the system. To eliminate this problem, we propose a lifetime-based memory management framework, which, by automatically analyzing the userdefined functions and data types, obtains the expected lifetime of the data objects, and then allocates and releases memory space accordingly to minimize the garbage collection overhead. In particular, we present Deca, a concrete implementation of our proposal on top of Spark, which transparently decomposes and groups objects with similar lifetimes into byte arrays and releases their space altogether when their lifetimes come to an end. An extensive experimental study using both synthetic and real datasets shows that, in comparing to Spark, Deca is able to 1) reduce the garbage collection time by up to 99.9%, 2) to achieve up to 22.7x speed up in terms of execution time in cases without data spilling and 41.6x speedup in cases with data spilling, and 3) to consume up to 46.6% less memory.
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملBroom: Sweeping Out Garbage Collection from Big Data Systems
Many popular systems for processing “big data” are implemented in high-level programming languages with automatic memory management via garbage collection (GC). However, high object churn and large heap sizes put severe strain on the garbage collector. As a result, applications underperform significantly: GC increases the runtime of typical data processing tasks by up to 40%. We propose to use ...
متن کاملA High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure
The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...
متن کاملA High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure
The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...
متن کاملA Data and Task Parallel Image Processing Environment for Distributed Memory Systems
The paper presents a data and task parallel low-level image processing environment for distributed memory systems. Image processing operators are parallelized by data decomposition using algorithmic skeletons. At the application level we use task decomposition, based on the Image Application Task Graph. In this way, an image processing application can be parallelized both by data and task decom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 9 شماره
صفحات -
تاریخ انتشار 2016