An introduction to causal inference.
نویسنده
چکیده
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملBook review of “ Observation and Experiment : An Introduction to Causal Inference ” by Paul R . Rosenbaum
The economist Paul Samuelson said, “My belief is that nothing that can be expressed by mathematics cannot be expressed by careful use of literary words.” Paul Rosenbaum brings this perspective to causal inference in his new book Observation and Experiment: An Introduction to Causal Inference (Harvard University Press, 2017). The book is a luminous presentation of concepts and strategies for cau...
متن کاملCausal Inference in Statistics: An Introduction
This paper provides a conceptual introduction to causal inference, aimed to assist researchers bene t from recent advances in this area. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in ...
متن کاملFunctional Data Analysis, Causal Inference and Brain Connectivity
Functional data analysis (FDA) and causal inference are two areas that have received substantial interest in the statistics literature lately. However, to date, both remain relatively underutilized in the neuroimaging community. This talk illustrates several neuroimaging applications in which both FDA and causal inference promise to play an important role. We conclude with the introduction of a...
متن کاملCausal Inference in Statistics: A Gentle Introduction
This paper provides a conceptual introduction to causal inference, aimed to assist researchers bene t from recent advances in this area. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of biostatistics
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2010