Enhanced radial transport and energization of radiation belt electrons due to drift orbit bifurcations

نویسندگان

  • A Y Ukhorskiy
  • M I Sitnov
  • R M Millan
  • B T Kress
  • D C Smith
چکیده

[1]Relativistic electron intensities in Earth's outer radiation belt can vary by multiple orders of magnitude on the time scales ranging from minutes to days. One fundamental process contributing to dynamic variability of radiation belt intensities is the radial transport of relativistic electrons across their drift shells. In this paper we analyze the properties of three-dimensional radial transport in a global magnetic field model driven by variations in the solar wind dynamic pressure. We use a test particle approach which captures anomalous effects such as drift orbit bifurcations. We show that the bifurcations lead to an order of magnitude increase in radial transport rates and enhance the energization at large equatorial pitch angles. Even at quiet time fluctuations in dynamic pressure, radial transport at large pitch angles exhibits strong deviations from the diffusion approximation. The radial transport rates are much lower at small pitch angle values which results in a better agreement with the diffusion approximation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substorm injections produce sufficient electron energization to account for MeV flux enhancements following some storms

[1] One of the main questions concerning radiation belt research is the origin of very high energy (>1 MeV) electrons following many space storms. Under the hypothesis that the plasma sheet electron population is the source of these electrons, which are convected to the outer radiation belt region during substorms, we estimate the flux of particles generated at geosynchronous orbit. We use the ...

متن کامل

Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit

Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty-six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the el...

متن کامل

Storm-dependent radiation belt electron dynamics

[1] Using recently published electron phase space densities (PSD) as a function of L* (L* is approximately the radial distance in Earth radii at the equator) and time, energization and loss in the Earth’s outer electron radiation belt were studied quantitatively and numerically using a radial diffusion model that included finite electron lifetimes and an internal source parameterized as a funct...

متن کامل

Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field...

متن کامل

On the threshold energization of radiation belt electrons by double layers

Using a Hamiltonian approach, we quantify the energization threshold of electrons interacting with radiation belts’ double layers discovered by Mozer et al. (2013). We find that double layers with electric field amplitude E0 ranging between 10 and 100 mV/m and spatial scales of the order of few Debye lengths are very efficient in energizing electrons with initial velocities v∥ ≤ vth to 1 keV le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2014