Subjectivity Recognition on Word Senses via Semi-supervised Mincuts
نویسندگان
چکیده
We supplement WordNet entries with information on the subjectivity of its word senses. Supervised classifiers that operate on word sense definitions in the same way that text classifiers operate on web or newspaper texts need large amounts of training data. The resulting data sparseness problem is aggravated by the fact that dictionary definitions are very short. We propose a semi-supervised minimum cut framework that makes use of both WordNet definitions and its relation structure. The experimental results show that it outperforms supervised minimum cut as well as standard supervised, non-graph classification, reducing the error rate by 40%. In addition, the semi-supervised approach achieves the same results as the supervised framework with less than 20% of the training data.
منابع مشابه
Semi-Supervised Polarity Lexicon Induction
We present an extensive study on the problem of detecting polarity of words. We consider the polarity of a word to be either positive or negative. For example, words such as good, beautiful , and wonderful are considered as positive words; whereas words such as bad, ugly, and sad are considered negative words. We treat polarity detection as a semi-supervised label propagation problem in a graph...
متن کاملFrom Words to Senses: A Case Study of Subjectivity Recognition
We determine the subjectivity of word senses. To avoid costly annotation, we evaluate how useful existing resources established in opinion mining are for this task. We show that results achieved with existing resources that are not tailored towards word sense subjectivity classification can rival results achieved with supervision on a manually annotated training set. However, results with diffe...
متن کاملTheme: A Study of Classifier Combination and Semi-Supervised Learning for Word Sense Disambiguation
1. Aims Word Sense Disambiguation (WSD) involves the association of a polysemous word in a text or discourse with a particular sense among numerous potential senses of that word. In my thesis, we present a study of classifier combination and semi-supervised learning for WSD, which aim to boost supervised WSD and improve accuracy of WSD. In addition, we also work on context representation and fe...
متن کاملSemi-supervised Clustering for Word Instances and Its Effect on Word Sense Disambiguation
We propose a supervised word sense disambiguation (WSD) system that uses features obtained from clustering results of word instances. Our approach is novel in that we employ semi-supervised clustering that controls the fluctuation of the centroid of a cluster, and we select seed instances by considering the frequency distribution of word senses and exclude outliers when we introduce “must-link”...
متن کاملIterative Constrained Clustering for Subjectivity Word Sense Disambiguation
Subjectivity word sense disambiguation (SWSD) is a supervised and applicationspecific word sense disambiguation task disambiguating between subjective and objective senses of a word. Not surprisingly, SWSD suffers from the knowledge acquisition bottleneck. In this work, we use a “cluster and label” strategy to generate labeled data for SWSD semiautomatically. We define a new algorithm called It...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009