The Extended Fock Basis of Clifford Algebra
نویسنده
چکیده
We investigate the properties of the Extended Fock Basis (EFB) of Clifford algebras [1] with which one can replace the traditional multivector expansion of Cl(g) with an expansion in terms of simple (also: pure) spinors. We show that a Clifford algebra with 2m generators is the direct sum of 2m spinor subspaces S characterized as being left eigenvectors of Γ; furthermore we prove that the well known isomorphism between simple spinors and totally null planes holds only within one of these spinor subspaces. We also show a new symmetry between spinor and vector spaces: similarly to a vector space of dimension 2m that contains totally null planes of maximal dimension m, also a spinor space of dimension 2m contains “totally simple planes”, subspaces made entirely of simple spinors, of maximal dimension m.
منابع مشابه
Extensions of the Tensor Algebra and Their Applications
This article presents a natural extension of the tensor algebra. This extended algebra is based on a vector space as the ordinary tensor algebra is. In addition to “left multiplications” by vectors, we can consider “derivations” by covectors as fundamental operators on this algebra. These two types of operators satisfy an analogue of the canonical commutation relations, and we can regard the al...
متن کاملNotes on Fock Space
These notes are intended as a fairly self contained explanation of Fock space and various algebras that act on it, including a Clifford algebras, a Weyl algebra, and an affine Kac-Moody algebra. We also discuss how the various algebras are related, and in particular describe the celebrated boson-fermion correspondence. We finish by briefly discussing a deformation of Fock space, which is a repr...
متن کاملEquivariant K-theory, generalized symmetric products, and twisted Heisenberg algebra
For a space X acted by a finite group Γ, the product space X affords a natural action of the wreath product Γn = Γ n ⋊ Sn. The direct sum of equivariant K-groups ⊕ n≥0 KΓn(X )⊗C were shown earlier by the author to carry several interesting algebraic structures. In this paper we study the Kgroups K H̃Γn (X) of Γn-equivariant Clifford supermodules on X . We show that F Γ (X) = ⊕ n≥0 H̃Γn (X)⊗ C is ...
متن کاملClifford Wavelets and Clifford-valued MRAs
In this paper using the Clifford algebra over R4 and its matrix representation, we construct Clifford scaling functions and Clifford wavelets. Then we compute related mask functions and filters, which arise in many applications such as quantum mechanics.
متن کاملA note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012