On the confluence of λ-calculus with conditional rewriting
نویسندگان
چکیده
The confluence of untyped λ-calculus with unconditional rewriting is now well understood. In this paper, we investigate the confluence of λ-calculus with conditional rewriting and provide general results in two directions. First, when conditional rules are algebraic. This extends results of Müller and Dougherty for unconditional rewriting. Two cases are considered, whether betareduction is allowed or not in the evaluation of conditions. Moreover, Dougherty’s result is improved from the assumption of strongly normalizing β-reduction to weakly normalizing β-reduction. We also provide examples showing that outside these conditions, modularity of confluence is difficult to achieve. Second, we go beyond the algebraic framework and get new confluence results using a restricted notion of orthogonality that takes advantage of the conditional part of rewrite rules.
منابع مشابه
On the Confluence of lambda-Calculus with Conditional Rewriting
The confluence of untyped λ-calculus with unconditional rewriting is now well understood. In this paper, we investigate the confluence of λ-calculus with conditional rewriting and provide general results in two directions. First, when conditional rules are algebraic. This extends results of Müller and Dougherty for unconditional rewriting. Two cases are considered, whether betareduction is allo...
متن کاملRewriting Modulo \beta in the \lambda\Pi-Calculus Modulo
The λ Π-calculus Modulo is a variant of the λ -calculus with dependent types where β -conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the λ Π-calculus Modulo. However, they hold if the rewr...
متن کاملConfluence via strong normalisation in an algebraic lambda-calculus with rewriting
The linear-algebraic λ -calculus and the algebraic λ -calculus are untyped λ -calculi extended with arbitrary linear combinations of terms. The former presents the axioms of linear algebra in the form of a rewrite system, while the latter uses equalities. When given by rewrites, algebraic λ -calculi are not confluent unless further restrictions are added. We provide a type system for the linear...
متن کاملThe Permutative λ-Calculus
We introduce the permutative λ-calculus, an extension of λ-calculus with three equations and one reduction rule for permuting constructors, generalising many calculi in the literature, in particular Regnier’s sigma-equivalence and Moggi’s assoc-equivalence. We prove confluence modulo the equations and preservation of beta-strong normalisation (PSN) by means of an auxiliary substitution calculus...
متن کاملExtensional Rewriting with Sums
Inspired by recent work on normalisation by evaluation for sums, we propose a normalising and confluent extensional rewriting theory for the simply-typed λ-calculus extended with sum types. As a corollary of confluence we obtain decidability for the extensional equational theory of simply-typed λ-calculus extended with sum types. Unlike previous decidability results, which rely on advanced rewr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006