Clustering Heterogeneous Data with Mutual Semi-supervision
نویسندگان
چکیده
We propose a new methodology for clustering data comprising multiple domains or parts, in such a way that the separate domains mutually supervise each other within a semi-supervised learning framework. Unlike existing uses of semi-supervised learning, our methodology does not assume the presence of labels from part of the data, but rather, each of the different domains of the data separately undergoes an unsupervised learning process, while sending and receiving supervised information in the form of data constraints to/from the other domains. The entire process is an alternation of semi-supervised learning stages on the different data domains, based on Basu et al.’s Hidden Markov Random Fields (HMRF) variation of the K-means algorithm for semi-supervised clustering that combines the constraint-based and distance-based approaches in a unified model. Our experiments demonstrate a successful mutual semi-supervision between the different domains during clustering, that is superior to the traditional heterogeneous domain clustering baselines consisting of converting the domains to a single domain or clustering each of the domains separately.
منابع مشابه
A Framework for Online Clustering Based on Evolving Semi-Supervision
The huge amount of currently available data puts considerable constraints on the task of information retrieval. Automatic methods to organize data, such as clustering, can be used to help with this task allowing timely access. Semi-supervised clustering approaches employ some additional information to guide the clustering performed based on data attributes to a more suitable data partition. How...
متن کاملA Cluster-Level Semi-supervision Model for Interactive Clustering
Semi-supervised clustering models, that incorporate user provided constraints to yield meaningful clusters, have recently become a popular area of research. In this paper, we propose a cluster-level semi-supervision model for inter-active clustering. Prototype based clustering algorithms typically alternate between updating cluster descriptions and assignment of data items to clusters. In our m...
متن کاملActive Semi-Supervision for Pairwise Constrained Clustering
Semi-supervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of must-link and cannotlink constraints between pairs of examples. This paper presents a pairwise constrained clustering framework and a new method for actively selecting informative pairwise constraints to get improved clustering performance. The clust...
متن کاملRelaxed Oracles for Semi-Supervised Clustering
Pairwise “same-cluster” queries are one of the most widely used forms of supervision in semi-supervised clustering. However, it is impractical to ask human oracles to answer every query correctly. In this paper, we study the influence of allowing “not-sure” answers from a weak oracle and propose an effective algorithm to handle such uncertainties in query responses. Two realistic weak oracle mo...
متن کاملProbabilistic Semi-Supervised Clustering with Constraints
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supervision. Such methods use the constraints to either modify the objective function, or to learn th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012