Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies

نویسندگان

  • Rakhi Rajan
  • Rajendra Prasad
  • Bhupesh Taneja
  • Samuel H. Wilson
  • Alfonso Mondragón
چکیده

Topoisomerase V (Topo-V) is the only member of a novel topoisomerase subtype. Topo-V is unique because it is a bifunctional enzyme carrying both topoisomerase and DNA repair lyase activities within the same protein. Previous studies had shown that the topoisomerase domain spans the N-terminus of the protein and is followed by 12 tandem helix-hairpin-helix [(HhH)(2)] domains. There are at least two DNA repair lyase active sites for apurinic/apyrimidinic (AP) site processing, one within the N-terminal region and the second within the C-terminal domain of Topo-V, but their exact locations and characteristics are unknown. In the present study, the N-terminal 78-kDa fragment of Topo-V (Topo-78), containing the topoisomerase domain and one of the lyase DNA repair domains, was characterized by structural and biochemical studies. The results show that an N-terminal 69-kDa fragment is the minimal fragment with both topoisomerase and AP lyase activities. The lyase active site of Topo-78 is at the junction of the fifth and sixth (HhH)(2) domains. From the biochemical and structural data, it appears that Lys571 is the most probable nucleophile responsible for the lyase activity. Our experiments also suggest that Topo-V most likely acts as a Class I AP endonuclease in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V ...

متن کامل

den V gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities.

Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiate...

متن کامل

Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV.

DNA damage generated by oxygen radicals includes base-free apurinic/apyrimidinic (AP) sites and strand breaks that bear deoxyribose fragments. The yeast Saccharomyces cerevisiae repairs such DNA lesions by using a single major enzyme. We have cloned the yeast structural gene (APN1) encoding this AP endonuclease/3'-repair diesterase by immunological screening of a yeast genomic DNA expression li...

متن کامل

Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue.

8-Hydroxyguanine (8-OH-G) is one of the major DNA oxidation products implicated in mutagenesis induced by oxygen radical-forming agents, including ionizing radiation. It is also believed to be involved in spontaneous mutation induced by metabolically produced oxygen radicals. A mammalian homologue of 8-OH-G glycosylase/apurinic, apyrimidinic lyase (mutM homologue, MMH) has been identified in th...

متن کامل

Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.

UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013