New Insights from the Oyster Crassostrea rhizophorae on Bivalve Circulating Hemocytes
نویسندگان
چکیده
Hemocytes are the first line of defense of the immune system in invertebrates, but despite their important role and enormous potential for the study of gene-environment relationships, research has been impeded by a lack of consensus on their classification. Here we used flow cytometry combined with histological procedures, histochemical reactions and transmission electron microscopy to characterize the hemocytes from the oyster Crassostrea rhizophorae. Transmission electron microscopy revealed remarkable morphological characteristics, such as the presence of membranous cisternae in all mature cells, regardless of size and granulation. Some granular cells contained many cytoplasmic granules that communicated with each other through a network of channels, a feature never previously described for hemocytes. The positive reactions for esterase and acid phosphatase also indicated the presence of mature cells of all sizes and granule contents. Flow cytometry revealed a clear separation in complexity between agranular and granular populations, which could not be differentiated by size, with cells ranging from 2.5 to 25 µm. Based on this evidence we suggest that, at least in C. rhizophorae, the different subpopulations of hemocytes may in reality be different stages of one type of cell, which accumulates granules and loses complexity (with no reduction in size) as it degranulates in the event of an environmental challenge.
منابع مشابه
Reactive Oxygen Species in Unstimulated Hemocytes of the Pacific Oyster Crassostrea gigas: A Mitochondrial Involvement
The Pacific oyster Crassostrea gigas is a sessile bivalve mollusc whose homeostasis relies, at least partially, upon cells circulating in hemolymph and referred to as hemocytes. Oyster's hemocytes have been reported to produce reactive oxygen species (ROS), even in absence of stimulation. Although ROS production in bivalve molluscs is mostly studied for its defence involvement, ROS may also be ...
متن کاملDetection of oxidative DNA damage in isolated marine bivalve hemocytes using the comet assay and formamidopyrimidine glycosylase (Fpg).
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to exa...
متن کاملPacific oyster (Crassostrea gigas) hemocyte are not affected by a mixture of pesticides in short-term in vitro assays.
Pesticides are frequently detected in estuaries among the pollutants found in estuarine and coastal areas and may have major ecological consequences. They could endanger organism growth, reproduction, or survival. In the context of high-mortality outbreaks affecting Pacific oysters, Crassostrea gigas, in France since 2008, it appears of importance to determine the putative effects of pesticides...
متن کاملCharacterization of hemocytes from different body fluids of the eastern oyster Crassostrea virginica.
Bivalve hemocytes are involved in a variety of physiological and immunological functions. Circulating hemocytes in the hemolymph represent the main component of the internal self-defense system while hemocytes present in the extrapallial space (between the mantle and the shell) are actively involved in biomineralization and shell formation. This study focused on the characterization of hemocyte...
متن کاملMolecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas.
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. We previously characterized the first AMP from an oyster, a defensin, that was shown to be continuously expressed in the mantle of Crassostrea gigas. In this study, we report the cDNA cloning of two new isoforms of the defensin AMP family (Cg-defh1 and Cg-defh2) from the hemocyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013