Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
نویسندگان
چکیده
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several methods have been introduced for prediction of solar activity indices especially the sunspot number, which is a common measure of solar activity. In this paper, the problem of embedding dimension estimation for solar activity chaotic time series based on polynomial models is considered. The optimality of embedding dimension has an important role in computational efforts, Lyapunov exponents' analysis and efficiency of prediction. The method of this paper is based on the fact that the reconstructed dynamics of an attractor should be a smooth map, i.e. with no self intersection in the reconstructed attractor. To check this property, a local general polynomial autoregressive model is fitted to the given data and a canonical state space realization is considered. Then, the normalized one-step forward prediction error for different orders and various degrees of nonlinearity in polynomials is evaluated. Besides the estimation of the embedding dimension, a predictive model is obtained which can be used for prediction and estimation of the Lyapunov exponents. This algorithm is applied to indicate the minimum embedding dimension of sunspot numbers (SSN), Disturbance Storm Time or Dst. and Proton Flux indices are some of the most important among solar activity indices and results depict the power of the proposed method in embedding dimension estimation.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملRiver Discharge Time Series Prediction by Chaos Theory
The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...
متن کاملInvestigation of Chaotic Nature of Sunspot Data by Nonlinear Analysis Techniques
In this work, an attempt is made to detect the chaotic nature of smooth monthly sunspot (SSN) time series using various nonlinear analysis techniques to quantify the uncertainty involved. Different nonlinear dynamic methods, with varying levels of complexity, are employed such as average mutual information and embedding dimension method to construct a phase space. The correlation dimension meth...
متن کاملInvestigating the Chaotic Nature of Flow the Upstream and Downstream of Zayandehrud-Dam Reservoir Using Chaotic Systems’ Criteria
River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008