Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks

نویسنده

  • Richard F. Bass
چکیده

We study moderate deviations for the renormalized self-intersection local time of planar random walks. We also prove laws of the iterated logarithm for such local times

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moderate Deviations and Laws of the Iterated Logarithm for the Local times of Additive Lévy Processes and Additive Random Walks

We study the upper tail behaviors of the local times of the additive Lévy processes and additive random walks. The limit forms we establish are the moderate deviations and the laws of the iterated logarithm for the L2-norms of the local times and for the local times at a fixed site. Subject classifications: 60F10, 60F15, 60J55, 60G52

متن کامل

Large and moderate deviations for intersection local times

We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csörgö, Shi and...

متن کامل

Moderate deviations for the range of planar random walks

Given a symmetric random walk in Z2 with finite second moments, let Rn be the range of the random walk up to time n. We study moderate deviations for Rn −ERn and ERn−Rn. We also derive the corresponding laws of the iterated logarithm.

متن کامل

Exponential Asymptotics and Law of the Iterated Logarithm for Intersection Local times of Random Walks

Let α([0,1]) denote the intersection local time of p independent d-dimensional Brownian motions running up to the time 1. Under the conditions p(d− 2)< d and d≥ 2, we prove lim t→∞ t −1 logP{α([0,1])≥ t}=−γα(d, p) with the right-hand side being identified in terms of the the best constant of the Gagliardo–Nirenberg inequality. Within the scale of moderate deviations, we also establish the preci...

متن کامل

Moderate and Small Deviations for the Ranges of One-dimensional Random Walks

We establish the moderate and small deviations for the ranges of the integer valued random walks. Our theorems apply to the limsup and the liminf laws of the iterated logarithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006