Genomic selection in tree breeding: testing accuracy of prediction models including dominance effect
نویسندگان
چکیده
Background The concept of Marker Assisted Selection (MAS) is rapidly evolving in animal and plant breeding. With the advent of high throughput molecular technology, numerous molecular markers distributed throughout the whole genome can be produced to characterize many genetic entries involving new perspectives in methodology of selection. An important research activity has begun in the animal world given the first theoretical framework for a methodology called genomic selection (GS) [1]. Several statistical approaches have been proposed for the prediction of genomic breeding values and numerous results are available that validates the interest of this method in animal breeding. In plants the GS is still limited to very advanced model species involved in genetic improvement and especially from scenario-based simulation [2,3]. In tree breeding the GS could significantly reduce the cost of genetic improvement schemes by limiting the size and number of field experiments; and facilitating the early selection at the nursery stage [4]. If most of the studies on GS have addressed the prediction of breeding value, taking into account the gene additive effects, there is still a lack of analyses dealing with the total genetic value (genotypic value) including both additive and dominance effects. This aspect is important in plant and especially in tree breeding where the goal of some programs is the production of clones or elite families. The aim of this study is to investigate the performance of GS in the context of tree breeding when the selection is based on genotypic value. The proposed approach allows taking into account both additive and dominance effect [5] for each marker in the statistical model. Six scenarios are simulated to test the reliability of the GS in the frame of recurrent selection scheme.
منابع مشابه
صحت انتخاب ژنومی روشهای پارامتری و ناپارامتری با معماریهای ژنتیکی افزایشی و غالبیت
In most genomic prediction studies only additive effects will be used in models for estimating genomic breeding values (GEBV). However, dominance genetic effects are an important source of variation for complex traits, considering them into account may improve the accuracy of GEBV. In the present study, performed applying simulated data, the effect of different heritability values (0.1...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملStability of Genomic Selection prediction models across ages and environments
Background A tree breeding program is characterized by long generation intervals which, over time, result in a much smaller number of breeding cycles when compared to annual crops. Moreover, most economically important traits in a tree-breeding program are quantitatively inherited, display low heritability and are expressed late in the life cycle. Genomic Selection (GS) is expected to be partic...
متن کاملکارایی انتخاب ژنومی در برنامههای اصلاح نژاد مرغان بومی
The development of genomic selection has created new strategies in animal breeding programs. The aim of this study was to investigate the efficiency of genomic selection in breeding programs of native hens. In this study, a reference scenario with 3380 birds using pedigree and phenotypic information was simulated and the expected genetic progress was derived deterministically with the software ...
متن کاملUnraveling additive from nonadditive effects using genomic relationship matrices.
The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the av...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011