Morphometric classification and spatial organization of spiral ganglion neurons in the human cochlea: Consequences for single fiber response to electrical stimulation
نویسندگان
چکیده
The unique, unmyelinated perikarya of spiral ganglion cells (SGCs) in the human cochlea are often arranged in functional units covered by common satellite glial cells. This micro anatomical peculiarity presents a crucial barrier for an action potential (AP) travelling from the sensory receptors to the brain. Confocal microscopy was used to acquire systematically volumetric data on perikarya and corresponding nuclei in their full dimension along the cochlea of two individuals. Four populations of SGCs within the human inner ear of two different specimens were identified using agglomerative hierarchical clustering, contrary to the present distinction of two groups of SGCs. Furthermore, we found evidence of a spatial arrangement of perikarya and their accordant nuclei along the cochlea spiral. In this arrangement, the most uniform sizes of cell bodies are located in the middle turn, which represents the majority of phonational frequencies. Since single-cell recordings from other mammalians may not be representative to humans and human SGCs are not accessible for physiological measurements, computer simulation has been used to quantify the effect of varying soma size on single neuron response to electrical micro stimulation. Results show that temporal parameters of the spiking pattern are affected by the size of the cell body. Cathodic stimulation was found to induce stronger variations of spikes while also leading to the lowest thresholds and longest latencies. Therefore, anodic stimulation leads to a more uniform excitation profile among SGCs with different cell body size.
منابع مشابه
Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملCharacterization of Single Auditory Nerve Fibers in response to Laser Stimulation
One drawback with traditional cochlear implants, which use electrical currents to stimulate spiral ganglion cells, is the ability to stimulate spatially discrete cells without overlap and electric current spread. We have recently demonstrated that spatially selective stimulation of the cochlea is possible with optical stimulation. However, for light to be a useful stimulation paradigm for stimu...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملElectrical Stimulation of Spiral Ganglion Cells in the Human Cochlea: A 3D Model
Electrical stimulation of auditory nerve fibers by cochlear implant electrodes has been an approved clinical practice to restore the hearing sensation in profoundly deaf people. Profound deafness is largely attributed to the loss of hair cells and subsequent decay of peripheral processes of auditory nerve fibers in the cochlea. In such pathological condition, spiral ganglion cells (SGN) which a...
متن کاملRadiant energy required for infrared neural stimulation
Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 214 شماره
صفحات -
تاریخ انتشار 2012