Use of Circle-Segments as a Data Visualization Technique for Feature Selection in Pattern Classification
نویسندگان
چکیده
One of the issues associated with pattern classification using databased machine learning systems is the “curse of dimensionality”. In this paper, the circle-segments method is proposed as a feature selection method to identify important input features before the entire data set is provided for learning with machine learning systems. Specifically, four machine learning systems are deployed for classification, viz. Multilayer Perceptron (MLP), Support Vector Machine (SVM), Fuzzy ARTMAP (FAM), and k-Nearest Neighbour(kNN). The integration between the circle-segments method and the machine learning systems has been applied to two case studies comprising one benchmark and one real data sets. Overall, the results after feature selection using the circlesegments method demonstrate improvements in performance even with more than 50% of the input features eliminated from the original data sets.
منابع مشابه
Use of the circle segments visualization technique for neural network feature selection and analysis
In this paper, the circle segments (CS) technique is proposed as a data visualization tool for selecting and analysing the effects of the input features towards the target outputs in constructing neural network models. Specifically, the multi-layer perceptron (MLP) network is employed to tackle function approximation and pattern classification tasks, and CS is used to provide visualization of t...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007