Sparse Channel Estimation for Massive MIMO System Based on Dirichlet Process and Combined Message Passing
نویسنده
چکیده
This paper investigate the problem of estimating sparse channels in massive MIMO systems. Most wireless channel are sparse with large delay spread, while some channels can be observed have common support within a certain area of the antenna array. This common support property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. In this paper, we proposed a novel channel estimation approach which utilize the common support by exerting a Dirichlet process (DP) prior over the sparse Bayesian learning (SBL) model. In addition, this Dirichlet process is modeled based on factor graph and combined BP-MF message passing. Compare to the variational Bayesian (VB) method in literaturewhich, the proposed method can improve the performance while significantly reduce the complexity. Simulation results demonstrate that the proposed algorithm outperform other reported ones in both performance and complexity.
منابع مشابه
EM-based parameter iterative approach for sparse Bayesian channel estimation of massive MIMO system
One of the main challenges for a massive multi-input multi-output (MIMO) system is to obtain accurate channel state information despite the increasing number of antennas at the base station. The Bayesian learning channel estimation methods have been developed to reconstruct the sparse channel. However, these existing methods depend heavily on the channel distribution. In this paper, based on sp...
متن کاملSemi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملA Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملMessage passing-based joint CFO and channel estimation in millimeter wave systems with one-bit ADCs
Channel estimation at millimeter wave (mmWave) is challenging when large antenna arrays are used. Prior work has leveraged the sparse nature of mmWave channels via compressed sensing based algorithms for channel estimation. Most of these algorithms, though, assume perfect synchronization and are vulnerable to phase errors that arise due to carrier frequency offset (CFO) and phase noise. Recentl...
متن کاملIterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems
We propose an iterative channel estimation algorithm based on the Least Square Estimation (LSE) and Sparse Message Passing (SMP) algorithm for the Millimeter Wave (mmWave) MIMO systems. The channel coefficients of the mmWave MIMO are approximately modeled as a Bernoulli-Gaussian distribution since there are relatively fewer paths in the mmWave channel, i.e., the channel matrix is sparse and onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.07020 شماره
صفحات -
تاریخ انتشار 2017