Large Deviations of Empirical Measures of Zeros of Random Polynomials
نویسندگان
چکیده
We prove a large deviation principle for empirical measures
منابع مشابه
Large deviations for zeros of random polynomials with i.i.d. exponential coefficients
We derive a large deviation principle for the empirical measure of zeros of the random polynomial Pn(z) = ∑n j=0 ξjz j , where the coefficients {ξj}j≥0 form an i.i.d. sequence of exponential random variables.
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملGeometry and large deviations for zeros of Gaussian random holomor- phic polynomials on Riemann sur- faces
متن کامل
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009