Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems
نویسندگان
چکیده
This paper studies the behavior of rotating magnetic microrobots, constructed with a permanent magnet or a soft ferromagnet, when the applied magnetic field rotates faster than a microrobot’s step-out frequency (the frequency requiring the entire available magnetic torque to maintain synchronous rotation). A microrobot’s velocity dramatically declines when operated above the step-out frequency. As a result, it has generally been assumed that microrobots should be operated beneath their step-out frequency. In this paper, we report and demonstrate properties of a microrobot’s behavior above the step-out frequency that will be useful for the design and control of multi-microrobot systems. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870768]
منابع مشابه
A biomimetic underwater microrobot with multifunctional locomotion
Underwater microrobots are in urgent demand for applications such as pollution detection and video mapping in limited space. Compact structure, multi-functionality, and flexibility are normally considered incompatible characteristics for underwater microrobots. Nevertheless, to accomplish our objectives, we designed a novel inchworm-inspired biomimetic locomotion prototype with ionic polymer me...
متن کاملA Novel Soft Biomimetic Microrobot with Two Motion Attitudes
A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microro...
متن کاملActuation, Sensing, and Fabrication for In Vivo Magnetic Microrobots
This paper investigates some of the fundamental design issues related to untethered biomedical microrobots guided inside the human body through external magnetic fields. Immediate application areas for these microrobots include cardiovascular, intraocular and inner-ear diagnosis and surgery. Issues investigated include the effects of magnetic actuation forces and viscous drag forces faced by ma...
متن کاملIndependent control of multiple magnetic microrobots in three dimensions
A major challenge for untethered micro-scale mobile robotics is the control of many agents in the same workspace for distributed operation. In this work, we present a new method to independently control multiple sub-mm microrobots in three dimensions (3D) using magnetic gradient pulling as the 3D motion generation method. Motion differentiation is accomplished through the use of geometrically o...
متن کاملDesign and Control of In-Vivo Magnetic Microrobots
This paper investigates fundamental design, modeling and control issues related to untethered biomedical microrobots guided inside the human body through external magnetic fields. Immediate application areas for these microrobots include cardiovascular, intraocular and inner-ear diagnosis and surgery. A prototype microrobot and steering system are introduced. Experimental results on fluid drag ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014