Proactive Dynamic Distributed Constraint Optimization

نویسندگان

  • Khoi D. Hoang
  • Ferdinando Fioretto
  • Ping Hou
  • Makoto Yokoo
  • William Yeoh
  • Roie Zivan
چکیده

Current approaches that model dynamism in DCOPs solve a sequence of static problems, reacting to changes in the environment as the agents observe them. Such approaches thus ignore possible predictions on future changes. To overcome this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formalism to model dynamic DCOPs in the presence of exogenous uncertainty. In contrast to reactive approaches, PD-DCOPs are able to explicitly model the possible changes to the problem, and take such information into account proactively, when solving the dynamically changing problem. The additional expressivity of this formalism allows it to model a wider variety of distributed optimization problems. Our work presents both theoretical and practical contributions that advance current dynamic DCOP models: (i) we introduce the PD-DCOP model, which explicitly captures dynamic changes of the DCOP over time; (ii) we discuss the complexity of this new class of DCOPs; and (iii) we develop both exact and approximation algorithms with quality guarantees to solve PDDCOPs proactively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite-Horizon Proactive Dynamic DCOPs

The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool for modeling multi-agent coordination problems. Researchers have recently extended this model to Proactive Dynamic DCOPs (PD-DCOPs) to capture the inherent dynamism present in many coordination problems. The PD-DCOP formulation is a finite-horizon model that assumes a finite horizon is known a priori. It ignor...

متن کامل

Applying Distributed Constraint Optimization Method to Dynamic Problem

A framework which applies distributed constraint optimization method using depth first search tree to dynamic problem is proposed. The proposed framework is considered as a basic model of multi agent system. The agents communicate with each other to solve the problem. Constraint network for the problem is built. Trees, which are similar to depth first search tree for the constraint network, are...

متن کامل

Lp-Norm based algorithm for multi-objective distributed constraint optimization

In this paper, we develop a novel algorithm which finds a subset of Pareto front of a Multi-Objective Distributed Constraint Optimization Problem. This algorithm utilizes the Lp-norm method, pseudo-tree, and Dynamic Programming technique. Furthermore, we show that this Lp-norm based algorithm can only guarantee to find a Pareto optimal solution, when we employ L1-norm (Manhattan norm).

متن کامل

Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming

This paper proposes the design and implementation of a dynamic programming based algorithm for (distributed) constraint optimization, which exploits modern massively parallel architectures, such as those found in modern Graphical Processing Units (GPUs). The paper studies the proposed algorithm in both centralized and distributed optimization contexts. The experimental analysis, performed on un...

متن کامل

Model and Algorithm for Dynamic Multi-Objective Distributed Optimization

Many problems in multi-agent systems can be represented as a Distributed Constraint Optimization Problem (DCOP) where the goal is to find the best assignment to variables in order to minimize the cost. More complex problems including several criteria can be represented as a Multi-Objective Distributed Constraint Optimization Problem (MODCOP) where the goal is to optimize several criteria at the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016