Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG.

نویسندگان

  • T C Zahrt
  • J Song
  • J Siple
  • V Deretic
چکیده

In several bacteria, the catalase-peroxidase gene katG is under positive control by oxyR, a transcriptional regulator of the peroxide stress response. The Mycobacterium tuberculosis genome also contains sequences corresponding to oxyR, but this gene has been inactivated in the tubercle bacillus because of the presence of multiple mutations and deletions. Thus, M. tuberculosis katG and possibly other parts of the oxidative stress response in this organism are either not regulated or are controlled by a factor different from OxyR. The mycobacterial FurA is a homologue of the ferric uptake regulator Fur and is encoded by a gene located immediately upstream of katG. Here, we examine the possibility that FurA regulates katG expression. Inactivation of furA on the Mycobacterium smegmatis chromosome, a mycobacterial species that also lacks an oxyR homologue, resulted in derepression of katG, concomitant with increased resistance of the furA mutant to H2O2. In addition, M. smegmatis furA::Km(r) was more sensitive to the front-line antituberculosis agent isonicotinic acid hydrazide (INH) compared with the parental furA+ strain. The phenotypic manifestations were specific, as the mutant strain did not show altered sensitivity to organic peroxides, and both H2O2 and INH susceptibility profiles were complemented by the wild-type furA+ gene. We conclude that FurA is a second regulator of oxidative stress response in mycobacteria and that it negatively controls katG. In species lacking a functional oxyR, such as M. tuberculosis and M. smegmatis, FurA appears to be a dominant regulator affecting mycobacterial physiology and intracellular survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Metal-Dependent Regulators FurA and FurB from Mycobacterium Tuberculosis

The ferric uptake regulators (Fur) form a large family of bacterial metal-activated DNA-binding proteins that control a diverse set of genes at the transcriptional level. Mycobacterium tuberculosis, the causative agent of tuberculosis, expresses two members of the Fur family, designated FurA and FurB. Although both belong to the same family, they share only approximately 25% sequence identity a...

متن کامل

Regulation of the furA and catC operon, encoding a ferric uptake regulator homologue and catalase-peroxidase, respectively, in Streptomyces coelicolor A3(2).

We isolated the catC gene, encoding catalase-peroxidase in Streptomyces coelicolor, using sequence homology with the katG gene from Escherichia coli. Upstream of the catC gene, an open reading frame (furA) encoding a homologue of ferric uptake regulator (Fur) was identified. S1 mapping analysis indicated that the furA gene was cotranscribed with the catC gene. The transcriptional start site of ...

متن کامل

Exploring the structure and function of the mycobacterial KatG protein using trans-dominant mutants.

In order to probe the structure and function of the mycobacterial catalase-peroxidase enzyme (KatG), we employed a genetic approach using dominant-negative analysis of katG merodiploids. Transformation of Mycobacterium bovis BCG with various katG point mutants (expressed from low-copy-number plasmids) resulted in reductions in peroxidase and catalase activities as measured in cell extracts. The...

متن کامل

The Mycobacterial LysR-Type Regulator OxyS Responds to Oxidative Stress and Negatively Regulates Expression of the Catalase-Peroxidase Gene

Protection against oxidative stress is one of the primary defense mechanisms contributing to the survival of Mycobacterium tuberculosis in the host. In this study, we provide evidence that OxyS, a LysR-type transcriptional regulator functions as an oxidative stress response regulator in mycobacteria. Overexpression of OxyS lowers expression of the catalase-peroxidase (KatG) gene in M. smegmatis...

متن کامل

Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro.

Mycobacterium tuberculosis has a relatively high resistance to killing by hydrogen peroxide and organic peroxides. Resistance may be mediated by mycobacterial catalase-peroxidase (KatG) and possibly by alkyl hydroperoxide reductase (AhpC). To determine the interrelationship between sensitivity to H2O2, catalase and peroxidase activities, and bacillary growth rates measured both intracellularly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2001