ar X iv : m at h . A G / 0 51 01 26 v 2 5 N ov 2 00 5 TROPICAL DISCRIMINANTS

نویسندگان

  • ALICIA DICKENSTEIN
  • EVA MARIA FEICHTNER
  • BERND STURMFELS
چکیده

Tropical geometry is used to develop a new approach to the theory of discriminants and resultants in the sense of Gel'fand, Kapranov and Zelevinsky. The tropical A-discriminant, which is the tropicalization of the dual variety of the projective toric variety given by an integer matrix A, is shown to coincide with the Minkowski sum of the row space of A and the tropicalization of the kernel of A. This leads to an explicit positive formula for the extreme monomials of any A-discriminant, and to a combinatorial rule for deciding when two regular triangulations of A correspond to the same monomial of the A-discriminant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - l at / 0 01 10 26 v 2 1 3 N ov 2 00 0 1 QCD vacuum structure

Several issues related to the structure of the QCD vacuum are reviewed. We concentrate mostly on results concerning instantons and center vortices.

متن کامل

ar X iv : h ep - l at / 0 01 10 26 v 1 3 N ov 2 00 0 1 QCD vacuum structure

Several issues related to the structure of the QCD vacuum are reviewed. We concentrate mostly on results concerning instantons and center vortices.

متن کامل

ar X iv : g r - qc / 0 51 10 40 v 1 8 N ov 2 00 5 Canonical gauge - invariant variables for scalar perturbations in synchronous coordinates

Under an appropriate change of the perturbation variable LifshitzKhalatnikov propagation equations for the scalar perturbation reduce to d’Alembert equation. The change of variables is based on the Darboux transform.

متن کامل

ar X iv : m at h / 05 09 09 7 v 2 [ m at h . G N ] 1 5 N ov 2 00 5 COSMIC DIMENSIONS

Martin's Axiom for σ-centered partial orders implies that there is a cosmic space with non-coinciding dimensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007