Graded Control of Microtubule Severing by Tubulin Glutamylation
نویسندگان
چکیده
Microtubule-severing enzymes are critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles, and cilia where tubulin detyrosination, acetylation, and glutamylation are abundant. These modifications exhibit stereotyped patterns suggesting spatial and temporal control of microtubule functions. Using human-engineered and differentially modified microtubules we find that glutamylation is the main regulator of the hereditary spastic paraplegia microtubule severing enzyme spastin. Glutamylation acts as a rheostat and tunes microtubule severing as a function of glutamate number added per tubulin. Unexpectedly, glutamylation is a non-linear biphasic tuner and becomes inhibitory beyond a threshold. Furthermore, the inhibitory effect of localized glutamylation propagates across neighboring microtubules, modulating severing in trans. Our work provides the first quantitative evidence for a graded response to a tubulin posttranslational modification and a biochemical link between tubulin glutamylation and complex architectures of microtubule arrays such as those in neurons where spastin deficiency causes disease.
منابع مشابه
Tubulin polyglutamylation stimulates spastin-mediated microtubule severing
Posttranslational glutamylation of tubulin is present on selected subsets of microtubules in cells. Although the modification is expected to contribute to the spatial and temporal organization of the cytoskeleton, hardly anything is known about its functional relevance. Here we demonstrate that glutamylation, and in particular the generation of long glutamate side chains, promotes the severing ...
متن کاملDeconstructing FAK function
Polyglutamylation makes the cut L acroix et al. report that the addition of long glutamate side chains to tubulin stimulates microtubule disassembly by the microtubule-severing protein spastin. The C-terminal tails of tubulin subunits can be modifi ed in different ways, which might alter the recruitment of molecular motors and other microtubule-binding proteins. A family of glutamylase enzymes ...
متن کاملKatanin regulates dynamics of microtubules and biogenesis of motile cilia
The in vivo significance of microtubule severing and the mechanisms governing its spatial regulation are not well understood. In Tetrahymena, a cell type with elaborate microtubule arrays, we engineered null mutations in subunits of the microtubule-severing complex, katanin. We show that katanin activity is essential. The net effect of katanin on the polymer mass depends on the microtubule type...
متن کاملTubulin Glutamylation Regulates Ciliary Motility by Altering Inner Dynein Arm Activity
How microtubule-associated motor proteins are regulated is not well understood. A potential mechanism for spatial regulation of motor proteins is provided by posttranslational modifications of tubulin subunits that form patterns on microtubules. Glutamylation is a conserved tubulin modification [1] that is enriched in axonemes. The enzymes responsible for this posttranslational modification, gl...
متن کاملMultivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases
Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the β-tubulin tail. Coupled with ensemble and single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 164 شماره
صفحات -
تاریخ انتشار 2016