Wavefront image sensor chip
نویسندگان
چکیده
We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 microm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications.
منابع مشابه
New Method for Analysis of image sensor to produce and evaluate the image
In this paper, a new method for evaluating CMOS image sensors based on computer modeling and analysis is introduced. Image sensors are composed of different parts, each of which has a specific effect on image quality. Circuits of image sensors can be evaluated and analyzed using circuit simulators or theoretically, but these methods cannot help to produce the final image. In order to produce th...
متن کاملFocal-Plane Image and Beam Quality Sensors for Adaptive Optics
Control of adaptive optical elements for real-time wavefront phase distortion compensation is a rapidly growing field of research and technology development. Wavefront correction is essential for reliable long distance, near-ground laser communication as well as for imaging extended objects over large distances. Crucial to adaptively correcting the wavefront is a performance metric that can be ...
متن کاملQuantitative surface normal measurement by a wavefront camera.
A compact wavefront camera that allows users to quantitatively measure the intensity and wavefront at a remote object plane is reported. The camera is built from a chip-scale wavefront sensor that we previously developed. By measuring the wavefront of the image and calibrating the wavefront relationship between the image and object planes, the wavefront at the object plane can be computed and t...
متن کاملUse of a Two-Channel Moiré Wavefront Sensor for Measuring Topological Charge Sign of the Vortex Beam and Investigation of Its Change Due to an Odd Number of Reflections
One of the solutions of the Helmholtz equation is the vortex beams. In the recent decades, production and applications of these types of beams have found serious attentions. Determination of the vortex beam topological charge and its sign are very important issues. Odd number of reflections of the vortex beam changes its vorticity. In this paper, we have used a q-plate to generate a vortex beam...
متن کاملWavefront sensorless adaptive optics ophthalmoscopy in the human eye
Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor 'beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the sam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2010