Characterizing Expertise of Search Engine Users
نویسندگان
چکیده
Search engine click-through data is a valuable source of implicit user feedback for relevance. However, not all user clicks are good indication of relevance. The clicks from search experts, who are more successful searching a query, tend to be more reliable in indicating document relevance than those of the non-experts. Therefore, knowing the expertise of search users is helpful to better understand their clicks. In this paper, we propose two probabilistic modelings of user expertise in the environment of web search. Inspired by the idea of evaluation metrics in classification, search users are treated as classifiers and result documents are viewed as the data samples to classify in our models. A click implies that the document is classified as relevant by the user. Therefore, the expertise of a user can be measured by how well he/she classifies the documents. We carry out experiments on a real-world click-through data of a Chinese search engine. The results show that modeling user expertise helps the click models with relevance inference, which also implies that our models are effective in identifying the user expertise.
منابع مشابه
Anatomy of a Collaborative Search Engine
We present ExpertRec, a collaborative/social Web search engine. With ExpertRec, users share experts’ search histories (search expertise) through a Web browser toolbar or a proxy browser. As compared to a current web search engine, there are two challenges in ExpertRec: one is to supply a right teamwork environment to satisfy users’ collaborative search; other is to identify search expertise thr...
متن کاملA Belief Network Model for Expert Search
Expert search is a task of growing importance in Enterprise settings. In a classical search setting, users normally require relevant documents to fulfil an information need. However, in Enterprise settings, users also have a need to identify the co-workers with relevant expertise to a topic area. An expert search engine assists users with their expertise need, by ranking candidate experts with ...
متن کاملReview of ranked-based and unranked-based metrics for determining the effectiveness of search engines
Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...
متن کاملDiscovering Popular Clicks\' Pattern of Teen Users for Query Recommendation
Search engines are still the most important gates for information search in internet. In this regard, providing the best response in the shortest time possible to the user's request is still desired. Normally, search engines are designed for adults and few policies have been employed considering teen users. Teen users are more biased in clicking the results list than are adult users. This leads...
متن کاملAn Ensemble Click Model for Web Document Ranking
Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013