Multilevel Factor analysis models for continuous and discrete data

نویسندگان

  • Harvey Goldstein
  • William Browne
چکیده

A very general class of multilevel factor analysis and structural equation models is proposed which are derived from considering the concatenation of a series of building blocks that use sets of factor structures defined within the levels of a multilevel model. An MCMC estimation algorithm is proposed for this structure to produce parameter chains for point and interval estimates. We show how traditional models for binary response factor analysis can be extended to fit multiple factors within a multilevel data structure. It is shown how a probit link function has useful interpretations and in particular that this allows the joint modeling of binary, ordered and continuous response variables. The model is applied to the study of country differences in a large scale study of Mathematics achievement in schools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Students Reading Motivation: A Multilevel Mixture Factor Analysis

Latent variable modeling is a commonly used data analysis tool in social sciences and other applied fields. The most popular latent variable models are factor analysis (FA) and latent class analysis (LCA). FA assumes that there is one or more continuous latent variables – called factors – determining the responses on a set of observed variables, while LCA assumes that there is an underlying cat...

متن کامل

Modeling Nonnegative Data with Clumping at Zero: A Survey

Applications in which data take nonnegative values but have a substantial proportion of values at zero occur in many disciplines. The modeling of such “clumped-at-zero” or “zero-inflated” data is challenging. We survey models that have been proposed. We consider cases in which the response for the non-zero observations is continuous and in which it is discrete. For the continuous and then the d...

متن کامل

Multilevel Regression and Multilevel Structural Equation Modeling

Multilevel modeling in general concerns models for relationships between variables defined at different levels of a hierarchical data set, which is often viewed as a multistage sample from a hierarchically structured population. Common applications are individuals within groups, repeated measures within individuals, longitudinal modeling, and cluster randomized trials. This chapter treats the m...

متن کامل

Multilevel Mixture Factor Models.

Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs) have in common that-as in multilevel regression ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003