Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation.
نویسندگان
چکیده
We assessed relationships of evoked electrical and light scattering changes from cat dorsal hippocampus following Schaeffer collateral stimulation. Under anesthesia, eight stimulating electrodes were placed in the left hippocampal CA field and an optic probe, coupled to a photodiode or a charge-coupled device camera to detect scattered light changes, was lowered to the contralateral dorsal hippocampal surface. Light at 660 +/- 10 (SE) nm illuminated the tissue through optic fibers surrounding the optic probe. An attached bipolar electrode recorded evoked right hippocampal commissural potentials. Electrode recordings and photodiode output were simultaneously acquired at 2.4 kHz during single biphasic pulse stimuli 0.5 ms in duration with 0.1-Hz intervals. Camera images were digitized at 100 Hz. An average of 150 responses was calculated for each of six stimulating current levels. Stimuli elicited a complex population synaptic potential that lasted 100-200 ms depending on stimulus intensity and electrode position. Light scattering changes peaked 20 ms after stimuli and occurred simultaneously with population spikes. A long-lasting light scattering component peaked 100-500 ms after the stimulus, concurrently with larger population postsynaptic potentials. Optical signals occurred over a time course similar to that for electrical signals and increased with larger stimulation amplitude to a maximum, then decreased with further increases in stimulation current. Camera images revealed a topographic response pattern that paralleled the photodiode measurements and depended on stimulation electrode position. Light scattering changes accompanied fast electrical responses, occurred too rapidly for perfusion, and showed a stimulus intensity relationship not consistent with glial changes.
منابع مشابه
RAPID COMMUNICATION Enhanced Synaptic Transmission in CA1 Hippocampus After Eyeblink Conditioning
Power, John M., Lucien T. Thompson, James R. Moyer, Jr., stimulation evoked larger summating excitatory postsynaptic and John F. Disterhoft. Enhanced synaptic transmission in CA1 potentials (EPSPs) in CA1 pyramidal neurons from condihippocampus after eyeblink conditioning. J. Neurophysiol. 78: tioned rabbits (LoTurco et al. 1988). [ H] a-amino-3-hy1184–1187, 1997. CA1 field potentials evoked by...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملImaging of synaptically evoked intrinsic optical signals in hippocampal slices.
Imaging analysis techniques were used to examine changes in the intrinsic optical properties in hippocampal brain slices that occurred during synaptic activity evoked by Schaffer collateral stimulation in CA1. Repetitive synaptic activity was associated with an increase in light transmission in the synaptic region in stratum radiatum. The effect was seen at wavelengths of light between 450 and ...
متن کاملThe temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing
In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake a...
متن کاملPostnatal Changes of Conduction Velocity of the Fibers in and out of the Mouse Barrel Cortex
There are some conflicts about constancy of conduction velocity (CV) in a given tract of nervous system. By recording excitatory postsynaptic currents (EPSC) in layer IV of the somatosensory cortex we tried to clear changes in CV of thalamocortical tract of mice aged 3 to 50 days old. Field potentials and EPSC were recorded in the layer IV by stimulation of ventrobasal nucleus of thalamus (VB) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 3 شماره
صفحات -
تاریخ انتشار 1997