A neural model of valuation and information virality.

نویسندگان

  • Christin Scholz
  • Elisa C Baek
  • Matthew Brook O'Donnell
  • Hyun Suk Kim
  • Joseph N Cappella
  • Emily B Falk
چکیده

Information sharing is an integral part of human interaction that serves to build social relationships and affects attitudes and behaviors in individuals and large groups. We present a unifying neurocognitive framework of mechanisms underlying information sharing at scale (virality). We argue that expectations regarding self-related and social consequences of sharing (e.g., in the form of potential for self-enhancement or social approval) are integrated into a domain-general value signal that encodes the value of sharing a piece of information. This value signal translates into population-level virality. In two studies (n = 41 and 39 participants), we tested these hypotheses using functional neuroimaging. Neural activity in response to 80 New York Times articles was observed in theory-driven regions of interest associated with value, self, and social cognitions. This activity then was linked to objectively logged population-level data encompassing n = 117,611 internet shares of the articles. In both studies, activity in neural regions associated with self-related and social cognition was indirectly related to population-level sharing through increased neural activation in the brain's value system. Neural activity further predicted population-level outcomes over and above the variance explained by article characteristics and commonly used self-report measures of sharing intentions. This parsimonious framework may help advance theory, improve predictive models, and inform new approaches to effective intervention. More broadly, these data shed light on the core functions of sharing-to express ourselves in positive ways and to strengthen our social bonds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying Virality of Information in Online Social Networks

The aim of this research is to propose a model through which the viral nature of an information item in an online social network can be quantified. Further, the authors propose an alternate technique for information asset valuation by accommodating virality in it which not only complements the existing valuation system, but also improves the accuracy of the results. They use a popularly availab...

متن کامل

Deep Convolutional Networks for Modeling Image Virality

Study of virality and information diffusion is a topic gaining traction rapidly in the computational social sciences. Computer vision and social network analysis research has also focused on understanding the impact of content and information diffusion in making content viral. We present a novel algorithm to model image virality on online networks using the increasingly popular deep convolution...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information

 A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of inp...

متن کامل

The Use of Fuzzy, Neural Network, and Adaptive Neuro-Fuzzy Inference System (ANFIS) to Rank Financial Information Transparency

Ranking of a company's financial information is one of the most important tools for identifying strengths and weaknesses and identifying opportunities and threats outside the company. In this study, it is attempted to examine the financial statements of companies to rank and explain the transparency of financial information of 198 companies during 2009-2017 using artificial intelligence and neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 11  شماره 

صفحات  -

تاریخ انتشار 2017