Intuitionistic Letcc via Labelled Deduction

نویسندگان

  • Jason Reed
  • Frank Pfenning
چکیده

The well-known embedding of intuitionistic logic into classical modal logic means that intuitionistic logic can be viewed as a calculus of labelled deduction on multiple-conclusion sequents, where the labels are the Kripke worlds of the modal embedding. The corresponding natural deduction system constitutes a type system for programs using control operators such as letcc that capture the current program continuation, which has a modal restriction on the use of such continuations that enforces constructive validity. This allows us to develop a rich dependent type theory incorporating letcc, which is known to be otherwise highly problematic for computational interpretations of classical logic. Moreover, we give a novel constructive proof for the soundness of this labelled deduction system, whose algorithmic content is a non-deterministic translation of programs that eliminates uses of letcc and is fully compatible with dependent types and therefore with program verification. This proof has been formally verified on the propositional fragment in the Twelf meta-logical framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labelled Deduction over Algebras of Truth-Values

We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...

متن کامل

Truth-values as Labels: A General Recipe for Labelled Deduction

We introduce a general recipe for presenting non-classical logics in a modular and uniform way as labelled deduction systems. Our recipe is based on a labelling mechanism where labels are general entities that are present, in one way or another, in all logics, namely truth-values. More specifically, the main idea underlying our approach is the use of algebras of truth-values, whose operators re...

متن کامل

A Judgmental Deconstruction of Modal Logic

The modalities and© of necessary and lax truth described by Pfenning and Davies can be seen to arise from the same pair of adjoint logical operators F and U , which pass in both directions between two judgments of differing strength. This may be generalized to a logic with many such adjunctions, across judgments subject to different substructral disciplines, allowing explanation of possibility ...

متن کامل

Labelled Natural Deduction for Substructural Logics

In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units { formulas labelled according to a labelling algebra. In the system described here, labels are either ground terms or variabl...

متن کامل

From Gabbay-style rules to labelled deduction

Is there a link between Gabbay-style rules, modal languages with nominals, and labelled deduction? It seems there should be: though they differ in many ways, all share the idea that state-names are important in modal deduction. I shall show how to move from a Gabbay-style rule to labelled deduction via the basic hybrid language. I finish with a discussion of the place of state-names in modal lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2009