Automatic Evaluation of Translation Quality for Distant Language Pairs

نویسندگان

  • Hideki Isozaki
  • Tsutomu Hirao
  • Kevin Duh
  • Katsuhito Sudoh
  • Hajime Tsukada
چکیده

Automatic evaluation of Machine Translation (MT) quality is essential to developing highquality MT systems. Various evaluation metrics have been proposed, and BLEU is now used as the de facto standard metric. However, when we consider translation between distant language pairs such as Japanese and English, most popular metrics (e.g., BLEU, NIST, PER, and TER) do not work well. It is well known that Japanese and English have completely different word orders, and special care must be paid to word order in translation. Otherwise, translations with wrong word order often lead to misunderstanding and incomprehensibility. For instance, SMT-based Japanese-to-English translators tend to translate ‘A because B’ as ‘B because A.’ Thus, word order is the most important problem for distant language translation. However, conventional evaluation metrics do not significantly penalize such word order mistakes. Therefore, locally optimizing these metrics leads to inadequate translations. In this paper, we propose an automatic evaluation metric based on rank correlation coefficients modified with precision. Our meta-evaluation of the NTCIR-7 PATMT JE task data shows that this metric outperforms conventional metrics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A Large-scale Study of Statistical Machine Translation Methods for Khmer Language

This paper contributes the first published evaluation of the quality of automatic translation between Khmer (the official language of Cambodia) and twenty other languages, in both directions. The experiments were carried out using three different statistical machine translation approaches: phrase-based, hierarchical phrase-based, and the operation sequence model (OSM). In addition two different...

متن کامل

Syntactic Reordering for English-Arabic Phrase-Based Machine Translation

We investigate syntactic reordering within an English to Arabic translation task. We extend a pre-translation syntactic reordering approach developed on a close language pair (English-Danish) to the distant language pair, English-Arabic. We achieve significant improvements in translation quality over related approaches, measured by manual as well as automatic evaluations. These results prove th...

متن کامل

Dynamic Terminology Integration Methods in Statistical Machine Translation

In this paper the author presents methods for dynamic terminology integration in statistical machine translation systems using a source text pre-processing workflow. The workflow consists of exchangeable components for term identification, inflected form generation for terms, and term translation candidate ranking. Automatic evaluation for three language pairs shows a translation quality improv...

متن کامل

Is all that Glitters in Machine Translation Quality Estimation really Gold?

Human-targeted metrics provide a compromise between human evaluation of machine translation, where high inter-annotator agreement is difficult to achieve, and fully automatic metrics, such as BLEU or TER, that lack the validity of human assessment. Human-targeted translation edit rate (HTER) is by far the most widely employed human-targeted metric in machine translation, commonly employed, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010