Sound and Complete Sort Encodings for First-Order Logic

نویسندگان

  • Jasmin Christian Blanchette
  • Andrei Popescu
چکیده

This is a formalization of the soundness and completeness proper-ties for various efficient encodings of sorts in unsorted first-order logicused by Isabelle’s Sledgehammer tool.The results are reported in [1, §2,3] and the formalization itself ispresented in [2, §3–5]. Essentially, the encodings proceed as follows:a many-sorted problem is decorated with (as few as possible) tags orguards that make the problem monotonic; then sorts can be soundlyerased. The proofs rely on monotonicity criteria recently introducedby Claessen, Lillieström and Smallbone [3].The development employs a formalization of many-sorted first-order logic in clausal form (clauses, structures and the basic propertiesof the satisfaction relation), which could be of interest as the startingpoint for other formalizations of first-order logic metatheory. References[1] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. Encodingmonomorphic and polymorphic types. In N. Piterman and S. Smolka,editors, TACAS 2013, volume 7795 of LNCS, pages 493–507. Springer,2013.[2] J. C. Blanchette and A. Popescu. Mechanizing the metatheory of sledge-hammer. To be presented at FroCoS 2013.[3] K. Claessen, A. Lillieström, and N. Smallbone. Sort it out withmonotonicity—Translating between many-sorted and unsorted first-order logic. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-23, volume 6803 of LNAI, pages 207–221. Springer, 2011.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Encodings of Fragments of Type Theory in First Order Logic

The paper presents sound and complete translations of several fragments of Martin-LL of's monomorphic type theory to rst order predicate calculus. The translations are optimised for the purpose of automated theorem proving in the mentioned fragments. The implementation of the theorem prover Gandalf and several experimental results are described .

متن کامل

On light logics, uniform encodings and polynomial time

We investigate on the extensional expressive power of Light Affine Logic, analysing the class of uniformly representable functions for various fragments of the logic. We give evidence on the incompleteness (for polynomial time) of the propositional fragment. Following previous work, we show that second order leads to polytime unsoundness. We then introduce simple constraints on second order qua...

متن کامل

On Linear Logic Planning and Concurrency

We present an approach to linear logic planning where an explicit correspondence between partial order plans and multiplicative exponential linear logic proofs is established. This is performed by extracting partial order plans from sound and complete encodings of planning problems in multiplicative exponential linear logic in a way that exhibits a non-interleaving behavioral concurrency semant...

متن کامل

On Linear Logic Planning and Concurrency

We present an approach to linear logic planning where an explicit correspondence between partial order plans and multiplicative exponential linear logic proofs is established. This is performed by extracting partial order plans from sound and complete encodings of planning problems in multiplicative exponential linear logic in a way that exhibits a non-interleaving behavioral concurrency semant...

متن کامل

A Simple Propositional S5 Tableau System

We give a sound and complete propositional S5 tableau system of a particularly simple sort, having an easy completeness proof. It sheds light on why the satisfiability problem for S5 is less complex than that for most other propositional modal logics. We believe the system remains complete when quantifier rules are added. If so, it would allow us to get partway to an interpolation theorem for f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archive of Formal Proofs

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013