Waring’s Problem with Digital Restrictions

نویسنده

  • Manfred Madritsch
چکیده

We present a generalization of a result due to Thuswaldner and Tichy to the ring of polynomials over a finite fields. In particular we want to show that every polynomial of sufficiently large degree can be represented as sum of k-th powers, where the bases evaluated on additive functions meet certain congruence restrictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WARING’S PROBLEM WITH DIGITAL RESTRICTIONS IN Fq[X]

We present a generalization of a result due to Thuswaldner and Tichy to the ring of polynomials over a finite fields. In particular we want to show that every polynomial of sufficiently large degree can be represented as sum of k-th powers, where the bases evaluated on additive functions meet certain congruence restrictions.

متن کامل

Waring’s Problem Restricted by a System of Sum of Digits Congruences

The aim of the present paper is to generalize earlier work by Thuswaldner and Tichy on Waring’s Problem with digital restrictions to systems of digital restrictions. Let sq(n) be the q-adic sum of digits function and let d, s, al, ml, ql ∈ N. Then for s > d ( log d+ log log d+O(1) ) there exists N0 ∈ N such that each integer N ≥ N0 has a representation of the form N = x 1 + · · ·+ xds where sql...

متن کامل

The Asymptotic Formula in Waring’s Problem

We derive a new minor arc bound, suitable for applications associated with Waring’s problem, from Vinogradov’s mean value theorem. In this way, the conjectured asymptotic formula in Waring’s problem is established for sums of s kth powers of natural numbers when k > 6 and s > 2k − 11.

متن کامل

On the p - adic Waring ’ s problem

Let R be a ring (commutative with unity, in what follows). For an integer n > 1 define gR(n) to be the least integer s for which every element of R is a sum of s nth powers of elements of R, if such an integer exists, or ∞ otherwise. Waring’s problem for R is the problem of deciding whether gR(n) is finite and estimating it for all n. Note that what is usually called Waring’s problem is not wha...

متن کامل

Sum-product Estimates Applied to Waring’s Problem Mod P

Let γ(k, p) denote Waring’s number (mod p) and δ(k, p) denote the ± Waring’s number (mod p). We use sum-product estimates for |nA| and |nA− nA|, following the method of Glibichuk and Konyagin, to estimate γ(k, p) and δ(k, p). In particular, we obtain explicit numerical constants in the Heilbronn upper bounds: γ(k, p) ≤ 83 k1/2, δ(k, p) ≤ 20 k1/2 for any positive k not divisible by (p− 1)/2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009