Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment.
نویسندگان
چکیده
To evaluate the role of low-voltage-activated (LVA) calcium channels in the lamprey spinal locomotor network, a previous computer simulation model has been extended to include LVA calcium channels. It is also of interest to explore the consequences of a LVA conductance for the electrical behavior of the single neuron. The LVA calcium channel was modeled with voltage-dependent activation and inactivation using the m3h form, following a Hodgkin-Huxley paradigm. Experimental data from lamprey neurons was used to provide parameter values of the single cell model. The presence of a LVA calcium conductance in the model could account for the occurrence of a rebound depolarization in the simulation model. The influence of holding potential on the occurrence of a rebound as well the latency at which it is elicited was investigated and compared with previous experiments. The probability of a rebound increased at a more depolarized holding potential and the latency was also reduced under these conditions. Furthermore, the effect of changing the holding potential and the reversal potential of the calcium dependent potassium conductance were tested to determine under which conditions several rebound spikes could be elicited after a single inhibitory pulse in the simulation model. A reduction of the slow afterhyperpolarization (sAHP) after the action potential reduced the tendency for a train of rebound spikes. The experimental effects of gamma-aminobutyric acid-B (GABA(B)) receptor activation were simulated by reducing the maximal LVA calcium conductance. A reduced tendency for rebound firing and a slower rising phase with sinusoidal current stimulation was observed, in accordance with earlier experiments. The effect of reducing the slow afterhyperpolarization and reducing the LVA calcium current was tested experimentally in the lamprey spinal cord, during N-methyl-D-aspartate (NMDA)-induced fictive locomotion. The reduction of burst frequency was more pronounced with GABA(B) agonists than with apamin (inhibitor of K(Ca) current) when using high NMDA concentration (high burst frequency). The burst frequency increased after the addition of a LVA calcium current to the simulated segmental network, due to a faster recovery during the inhibitory phase as the activity switches between the sides. This result is consistent with earlier experimental findings because GABA(B) receptor agonists reduce the locomotor frequency. These results taken together suggest that the LVA calcium channels contribute to a larger degree with respect to the burst frequency regulation than the sAHP mechanism at higher burst frequencies. The range in which a regular burst pattern can be simulated is extended in the lower range by the addition of LVA calcium channels, which leads to more stable activity at low locomotor frequencies. We conclude that the present model can account for rebound firing and trains of rebound spikes in lamprey neurons. The effects of GABA(B) receptor activation on the network level is consistent with a reduction of the calcium current through LVA calcium channels even though GABA(B) receptor activation will affect the sAHP indirectly and also presynaptic inhibition.
منابع مشابه
Roles of high-voltage-activated calcium channel subtypes in a vertebrate spinal locomotor network.
Lamprey spinal cord neurons possess N-, L-, and P/Q-type high-voltage-activated (HVA) calcium channels. We have analyzed the role of the different HVA calcium channels subtypes in the overall functioning of the spinal locomotor network by monitoring the influence of their specific agonists and antagonists on synaptic transmission and on N-methyl-D-aspartate (NMDA)-elicited fictive locomotion. T...
متن کامل5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey.
Postinhibitory rebound (PIR) can play a significant role for producing stable rhythmic motor patterns, like locomotion, by contributing to burst initiation following the phase of inhibition, and PIR may also be a target for modulatory systems acting on the network. The current aim was to explore the PIR in one type of interneuron in the lamprey locomotor network and its dependence on low voltag...
متن کاملIon Channels and Intrinsic Membrane Properties of Locomotor Network Neurons in the Lamprey Spinal Cord
NMDA-receptor dependent membrane potential oscillations and postinhibitory rebound are examples of intrinsic membrane properties of many neurons of rhythm-generating networks, and are considered to play major roles in the operation of the spinal locomotor network of the lamprey vertebrate model. A significant feature of many lamprey spinal cord neurons is their ability to generate pacemaker-lik...
متن کاملModulation of calcium currents and membrane properties by substance P in the lamprey spinal cord.
Substance P is endogenously released within the locomotor network of the adult lamprey, accelerates the burst frequency of fictive locomotion, and reduces the reciprocal inhibition. Previous studies have shown that dopamine, serotonin, and GABA regulate calcium channels, which control neurotransmitter release, action potential duration, and slow afterhyperpolarization (sAHP). Here we examine th...
متن کاملCalcium Channel Subtypes in Lamprey Sensory and Motor Neurons
El Manira, A. and N. Bussières. Calcium channel subtypes in different modulators require further study. Characterization lamprey sensory and motor neurons. J. Neurophysiol. 78: 1334– of the types and properties of calcium channels in identified 1340, 1997. Pharmacologically distinct calcium channels have spinal cord neurons is necessary to provide insight into their been characterized in dissoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 77 4 شماره
صفحات -
تاریخ انتشار 1997