Statistical Moment Estimation in Circuit Simulation

نویسندگان

  • Ashish Nigam
  • Qin Tang
  • Amir Zjajo
  • Michel Berkelaar
  • Nick van der Meijs
چکیده

Monte Carlo methods and simulation are often used to estimate the mean, variance, and higher order statistical moments of signal properties like delay and slew. The main issues with Monte Carlo methods are the required long run time and the need for prior detailed knowledge of the distribution of the variations. Additionally, most of available circuit simulation tools can run Monte Carlo analysis for Gaussian, lognormal and uniform distribution only. In this paper, in order to estimate these statistical moments, we propose a new method based on the uniform sampling technique and weighted sample estimator. The proposed method needs significantly less simulation runs, and does not need detailed prior knowledge of the variation distributions. Furthermore, it can be used for any type of probability distribution irrespective of the circuit simulation tool used for the analysis. The results obtained shows that the proposed method needs 100× fewer simulations iterations than Monte Carlo runs for the moments estimation of the delay for standard cells in 45nm and 32nm technologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Multi-segment Probability Density Estimation Through Moment Matching

The impact of process variations continues to grow as transistor feature size shrinks. Such variations in transistor parameters lead to variations and unpredictability in circuit output and may ultimately cause them to violate specifications leading to circuit failure. In fact, timely failures in critical circuits may lead to catastrophic failures in the entire chip. As such, statistical modeli...

متن کامل

Statistical Moment Estimation of Delay and Power in Circuit Simulation

Monte Carlo methods and simulation are often used to estimate the mean, variance, and higher order statistical moments of circuit properties like delay and power. The main issues with Monte Carlo methods are the required long run time and the need for prior detailed knowledge of the distribution of the variations. Additionally, most of available circuit simulation tools can run Monte Carlo anal...

متن کامل

Some statistical inferences on the upper record of Lomax distribution

In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.

متن کامل

Design of an Active Approach for Detection, Estimation and Short-Circuit Stator Fault Tolerant Control in Induction Motors

Three phase induction motors have many applications in industries. Consequently, detecting and estimating the fault and compensate it in a way that the faulty induction motor satisfies the predefined goals are important issues. One of the most common faults in induction motors is the short circuit of the stator winding. In this paper, an active fault-tolerant control system is designed and pres...

متن کامل

Moment Inequalities for Supremum of Empirical Processes of‎ ‎U-Statistic Structure and Application to Density Estimation

We derive moment inequalities for the supremum of empirical processes of U-Statistic structure and give application to kernel type density  estimation ‎and estimation of the distribution function for functions of observations.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010