Edge partitions of the countable triangle free homogeneous graph

نویسنده

  • Norbert Sauer
چکیده

In this paper we investigate edge partition problems of the countable triangle free homogeneous graph. As consequences of the main result, we obtain the following theorems. For every coloring of the edges of the countable triangle free homogeneous graph 0//with finitely many colors there exists a copy of q/in q/whose edges are colored with at most two of the colors. The countable triangle free homogeneous graph 0//is weakly edge indivisible, that is, for every coloring of the edges of og with two colors, say red and blue, the following holds: If there is a finite triangle free graph ff so that every copy of ff in q/contains a red edge, then there is a copy of q/ in ~//which has red edges only.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G

To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...

متن کامل

Sufficient conditions for maximally edge-connected and super-edge-connected

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...

متن کامل

Invariant measures on the set of graphs and homogeneous uncountable universal graphs

We describe the set of all invariant measures on the spaces of universal countable graphs and on the spaces of universal countable triangles-free graphs. The construction uses the description of the S∞-invariant measure on the space of infinite matrices in terms of measurable function of two variables on some special space. In its turn that space is nothing more than the universal continuous (B...

متن کامل

Invariant measures and homogeneous uncountable universal graphs

We describe the set of all invariant measures on the spaces of universal countable graphs and on the spaces of universal countable triangles-free graphs. The construction uses the description of the S∞-invariant measure on the space of infinite matrices in terms of measurable function of two variables on some special space. In its turn that space is nothing more than the universal continuous (B...

متن کامل

A local approach to the entropy of countable fuzzy partitions

This paper denes and investigates the ergodic proper-ties of the entropy of a countable partition of a fuzzy dynamical sys-tem at different points of the state space. It ultimately introducesthe local fuzzy entropy of a fuzzy dynamical system and proves itto be an isomorphism invariant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 185  شماره 

صفحات  -

تاریخ انتشار 1998