Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence.

نویسندگان

  • Xianghong Zou
  • Dipankar Ray
  • Aileen Aziyu
  • Konstantin Christov
  • Alexander D Boiko
  • Andrei V Gudkov
  • Hiroaki Kiyokawa
چکیده

A large number of human cancers display alterations in the Ink4a/cyclin D/Cdk4 genetic pathway, suggesting that activation of Cdk4 plays an important role in oncogenesis. Here we report that Cdk4-null mouse embryonic fibroblasts are resistant to transformation in response to Ras activation with dominant-negative (DN) p53 expression or in the Ink4a/Arf-null background, judged by foci formation, anchorage-independent growth, and tumorigenesis in athymic mice. Cdk4-null fibroblasts proliferate at normal rates during early passages. Whereas Cdk4(+/+)Ink4a/Arf(-/-) cells are immortal in culture, Cdk4(-/-)Ink4a/Arf(-/-) cells undergo senescence during continuous culture, as do wild-type cells. Activated Ras also induces premature senescence in Cdk4(-/-)Ink4a/Arf(-/-) cells and Cdk4(-/-) cells with DNp53 expression. Thus, Cdk4 deficiency causes senescence in a unique Arf/p53-independent manner, which accounts for the loss of transformation potential. Cdk4-null cells express high levels of p21(Cip1/Waf1) with increased protein stability. Suppression of p21(Cip1/Waf1) by small interfering RNA (siRNA), as well as expression of HPV-E7 oncoprotein, restores immortalization and Ras-mediated transformation in Cdk4(-/-)Ink4a/Arf(-/-) cells and Cdk4(-/-) cells with DNp53 expression. Therefore, Cdk4 is essential for immortalization, and suppression of Cdk4 could be a prospective strategy to recruit cells with inactive Arf/p53 pathway to senescence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oncogenic ras and p53 cooperate to induce cellular senescence.

Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and...

متن کامل

deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo.

TP73, despite significant homology to TP53, is not a classic tumor suppressor gene, since it exhibits upregulation of nonmutated products in human tumors and lacks a tumor phenotype in p73-deficient mice. We recently reported that an N-terminally truncated isoform, DeltaNp73, is upregulated in breast and gynecological cancers. We further showed that DeltaNp73 is a potent transdominant inhibitor...

متن کامل

The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence.

In primary mouse embryo fibroblasts (MEFs), oncogenic Ras induces growth arrest via Raf/MEK/extracellular signal-regulated kinase (ERK)-mediated activation of the p19ARF/p53 and INK4/Rb tumor suppressor pathways. Ablation of these same pathways causes spontaneous immortalization in MEFs, and oncogenic transformation by Ras requires ablation of one or both of these pathways. We show that Kinase ...

متن کامل

Cell Cycle and Senescence A p53/ARF-Dependent Anticancer Barrier Activates Senescence and Blocks Tumorigenesis without Impacting Apoptosis

In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53–ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In addition, senescen...

متن کامل

Loss of p19Arf Facilitates the Angiogenic Switch and Tumor Initiation in a Multi-Stage Cancer Model via p53-Dependent and Independent Mechanisms

The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 16 22  شماره 

صفحات  -

تاریخ انتشار 2002