Analysis of the dissipation and dispersion properties of the multi-domain Chebyshev pseudospectral method
نویسندگان
چکیده
Article history: Received 10 December 2012 Received in revised form 26 July 2013 Accepted 30 July 2013 Available online 17 August 2013
منابع مشابه
An improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملOptimal Runge–Kutta Methods for First OrderPseudospectral Operators
New Runge–Kutta methods for method of lines solution of systems of ordinary differential equations arising from discretizations of spatial derivatives in hyperbolic equations, by Chebyshev or modified Chebyshev methods, are introduced. These Runge–Kutta methods optimize the time step necessary for stable solutions, while holding dispersion and dissipation fixed. It is found that maximizing disp...
متن کاملElastic Buckling of Moderately Thick Homogeneous Circular Plates of Variable Thickness
In this study, the buckling response of homogeneous circular plates with variable thickness subjected to radial compression based on the first-order shear deformation plate theory in conjunction with von-Karman nonlinear strain-displacement relations is investigated. Furthermore, optimal thickness distribution over the plate with respect to buckling is presented. In order to determine the distr...
متن کاملA Fast Poisson Solver by Chebyshev Pseudospectral Method Using Reflexive Decomposition
Poisson equation is frequently encountered in mathematical modeling for scientific and engineering applications. Fast Poisson numerical solvers for 2D and 3D problems are, thus, highly requested. In this paper, we consider solving the Poisson equation ∇2u = f(x, y) in the Cartesian domain Ω = [−1, 1] × [−1, 1], subject to all types of boundary conditions, discretized with the Chebyshev pseudosp...
متن کاملRoundoo Error Analysis of the Fast Cosine Transform and of Its Application to the Chebyshev Pseudospectral Method
The roundoo error analysis of several algorithms commonly used to compute the Fast Cosine Transform and the derivatives using the Chebyshev pseudospectral method are studied. We derive precise expressions for the algorithmic error, and using them we give new theoretical upper bounds and produce a statistical analysis. The results are compared with numerical experiments.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 255 شماره
صفحات -
تاریخ انتشار 2013