Word Embedding Based Correlation Model for Question/Answer Matching

نویسندگان

  • Yikang Shen
  • Wenge Rong
  • Nan Jiang
  • Baolin Peng
  • Jie Tang
  • Zhang Xiong
چکیده

The large scale of Q&A archives accumulated in community based question answering (CQA) servivces are important information and knowledge resource on the web. Question and answer matching task has been attached much importance to for its ability to reuse knowledge stored in these systems: it can be useful in enhancing user experience with recurrent questions. In this paper, a Word Embedding based Correlation (WEC) model is proposed by integrating advantages of both the translation model and word embedding. Given a random pair of words, WEC can score their co-occurrence probability in Q&A pairs, while it can also leverage the continuity and smoothness of continuous space word representation to deal with new pairs of words that are rare in the training parallel text. An experimental study on Yahoo! Answers dataset and Baidu Zhidao dataset shows this new method’s promising

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

Using Generalized Language Model for Question Matching

Question and answering service is one of the popular services in the World Wide Web. The main goal of these services is to finding the best answer for user's input question as quick as possible. In order to achieve this aim, most of these use new techniques foe question matching. . We have a lot of question and answering services in Persian web, so it seems that developing a question matching m...

متن کامل

Multi-Perspective Context Matching for Machine Comprehension

Previous machine comprehension (MC) datasets are either too small to train endto-end deep learning models, or not difficult enough to evaluate the ability of current MC techniques. The newly released SQuAD dataset alleviates these limitations, and gives us a chance to develop more realistic MC models. Based on this dataset, we propose a Multi-Perspective Context Matching (MPCM) model, which is ...

متن کامل

Apprentissage d'inférences par édition d'arbres pour répondre à des questions

In order to answer question, we propose a matching algorithm that consists in generating and learning inferences needed to rely text passages to pairs (question, candidate answer). We first retrieve relevant passages, through lexical expansion involving WordNet and word vectors, that are enriches by lexico-semantic resources. Then a tree edit model is used on graph representations of the passag...

متن کامل

QA System Metis Based on Semantic Graph Matching at NTCIR 6

We have developed Metis, a question-answering system that finds an answer by matching a question graph with the knowledge graphs. The question graph is obtained as a result of semantic analysis of a question sentence, the knowledge graphs are similarly analyzed from knowledge sentences retrieved from a database using keywords extracted from the question sentence. In retrieving such knowledge se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017