From Segmented Images to Good Quality Meshes Using Delaunay Refinement
نویسندگان
چکیده
This paper surveys Delaunay-based meshing techniques for curved objects, and their application in medical imaging and in computer vision to the extraction of geometric models from segmented images. We show that the so-called Delaunay refinement technique allows to mesh surfaces and volumes bounded by surfaces, with theoretical guarantees on the quality of the approximation, from a geometrical and a topological point of view. Moreover, it offers extensive control over the size and shape of mesh elements, for instance through a (possibly non-uniform) sizing field. We show how this general paradigm can be adapted to produce anisotropic meshes, i.e. meshes elongated along prescribed directions. Lastly, we discuss extensions to higher dimensions, and especially to space-time for producing time-varying 3D models. This is also of interest when input images are transformed into data points in some higher dimensional space as is common practice in machine learning.
منابع مشابه
Feature preserving Delaunay mesh generation from 3D multi-material images
Generating realistic geometric models from 3D segmented images is an important task in many biomedical applications. Segmented 3D images impose particular challenges for meshing algorithms because they contain multimaterial junctions forming features such as surface patches, edges and corners. The resulting meshes should preserve these features to ensure the visual quality and the mechanical so...
متن کاملMesh Generation from 3D Multi-material Images
The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserv...
متن کاملHigh-Quality Multi-Tissue Mesh Generation for Finite Element Analysis
Mesh generation on 3D segmented images is a fundamental step for the construction of realistic biomechanical models. Mesh elements with low or large dihedral angles are undesirable, since they are known to underpin the speed and accuracy of the subsequent finite element analysis. In this paper, we present an algorithm for meshing 3D multi-label images. A notable feature of our method is its abi...
متن کاملOn Refinement of Constrained Delaunay Tetrahedralizations
This paper discusses the problem of refining constrained Delaunay tetrahedralizations (CDTs) into good quality meshes suitable for adaptive numerical simulations. A practical algorithm which extends the basic Delaunay refinement scheme is proposed. It generates an isotropic mesh corresponding to a sizing function which can be either user-specified or automatically derived from the geometric dat...
متن کاملParallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement
We develop a theoretical framework for constructing guaranteed quality Delaunay meshes in parallel for general two-dimensional geometries. This paper presents a new approach for constructing graded meshes, i.e., meshes with element size controlled by a user-defined criterion. The sequential Delaunay refinement algorithms are based on inserting points at the circumcenters of triangles of poor qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008