TOP-SPIN: TOPic discovery via Sparse Principal component INterference

نویسندگان

  • Martin Takác
  • Selin Damla Ahipasaoglu
  • Ngai-Man Cheung
  • Peter Richtárik
چکیده

We propose a novel topic discovery algorithm for unlabeled images based on the bag-of-words (BoW) framework. We first extract a dictionary of visual words and subsequently for each image compute a visual word occurrence histogram. We view these histograms as rows of a large matrix from which we extract sparse principal components (PCs). Each PC identifies a sparse combination of visual words which co-occur frequently in some images but seldom appear in others. Each sparse PC corresponds to a topic, and images whose interference with the PC is high belong to that topic, revealing the common parts possessed by the images. We propose to solve the associated sparse PCA problems using an Alternating Maximization (AM) method, which we modify for purpose of efficiently extracting multiple PCs in a deflation scheme. Our approach attacks the maximization problem in sparse PCA directly and is scalable to high-dimensional data. Experiments on automatic topic discovery and category prediction demonstrate encouraging performance of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Singing Voice separation from Polyphonic Music Accompanient using Compositional Model

There are abundant real time applications for singing voice separation from mixed audio. By means of Robust Principal Component Analysis (RPCA) which is a compositional model for segregation, which decomposes the mixed source audio signal into low rank and sparse components, where it is presumed that musical accompaniment as low rank subspace since musical signal model is repetitive in characte...

متن کامل

Memory and Computation Efficient PCA via Very Sparse Random Projections

Algorithms that can efficiently recover principal components in very high-dimensional, streaming, and/or distributed data settings have become an important topic in the literature. In this paper, we propose an approach to principal component estimation that utilizes projections onto very sparse random vectors with Bernoulli-generated nonzero entries. Indeed, our approach is simultaneously effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1311.1406  شماره 

صفحات  -

تاریخ انتشار 2013