Bandit Algorithms boost Brain Computer Interfaces for motor-task selection of a brain-controlled button
نویسندگان
چکیده
Brain-computer interfaces (BCI) allow users to “communicate” with a computer without using their muscles. BCI based on sensori-motor rhythms use imaginary motor tasks, such as moving the right or left hand, to send control signals. The performances of a BCI can vary greatly across users but also depend on the tasks used, making the problem of appropriate task selection an important issue. This study presents a new procedure to automatically select as fast as possible a discriminant motor task for a brain-controlled button. We develop for this purpose an adaptive algorithm, UCB-classif , based on the stochastic bandit theory. This shortens the training stage, thereby allowing the exploration of a greater variety of tasks. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. Comparing the proposed method to the standard practice in task selection, for a fixed time budget, UCB-classif leads to an improved classification rate, and for a fixed classification rate, to a reduction of the time spent in training by 50%.
منابع مشابه
Bandit Algorithms boost motor-task selection for Brain Computer Interfaces
Brain-computer interfaces (BCI) allow users to “communicate” with a computer without using their muscles. BCI based on sensori-motor rhythms use imaginary motor tasks, such as moving the right or left hand, to send control signals. The performances of a BCI can vary greatly across users but also depend on the tasks used, making the problem of appropriate task selection an important issue. This ...
متن کاملAutomatic motor task selection via a bandit algorithm for a brain-controlled button.
OBJECTIVE Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most p...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012