Improved Search in Hamming Space using Deep Multi-Index Hashing
نویسندگان
چکیده
Similarity-preserving hashing is a widely-used method for nearest neighbour search in large-scale image retrieval tasks. There has been considerable research on generating efficient image representation via the deep-network-based hashing methods. However, the issue of efficient searching in the deep representation space remains largely unsolved. To this end, we propose a simple yet efficient deepnetwork-based multi-index hashing method for simultaneously learning the powerful image representation and the efficient searching. To achieve these two goals, we introduce the multi-index hashing (MIH) mechanism into the proposed deep architecture, which divides the binary codes into multiple substrings. Due to the non-uniformly distributed codes will result in inefficiency searching, we add the two balanced constraints at feature-level and instancelevel, respectively. Extensive evaluations on several benchmark image retrieval datasets show that the learned balanced binary codes bring dramatic speedups and achieve comparable performance over the existing baselines.
منابع مشابه
An Efficient Hyperspectral Image Retrieval Method: Deep Spectral-Spatial Feature Extraction with DCGAN and Dimensionality Reduction Using t-SNE-Based NM Hashing
Hyperspectral images are one of the most important fundamental and strategic information resources, imaging the same ground object with hundreds of spectral bands varying from the ultraviolet to the microwave. With the emergence of huge volumes of high-resolution hyperspectral images produced by all sorts of imaging sensors, processing and analysis of these images requires effective retrieval t...
متن کاملHamming Compatible Quantization for Hashing
Hashing is one of the effective techniques for fast Approximate Nearest Neighbour (ANN) search. Traditional single-bit quantization (SBQ) in most hashing methods incurs lots of quantization error which seriously degrades the search performance. To address the limitation of SBQ, researchers have proposed promising multi-bit quantization (MBQ) methods to quantize each projection dimension with mu...
متن کاملDistribution-Aware Locality Sensitive Hashing
Locality Sensitive Hashing (LSH) has been popularly used in content-based search systems. There exist two main categories of LSH methods: one is to index the original data in an effective way to accelerate search process; the other one is to embed the high-dimensional data into hamming space and perform bit-wise operations to search similar objects. In this paper, we propose a new LSH scheme, c...
متن کاملTransfer Adversarial Hashing for Hamming Space Retrieval
Hashing is widely applied to large-scale image retrieval due to the storage and retrieval efficiency. Existing work on deep hashing assumes that the database in the target domain is identically distributed with the training set in the source domain. This paper relaxes this assumption to a transfer retrieval setting, which allows the database and the training set to come from different but relev...
متن کاملDiffusion Hashing
With the worldwide spread of the broadband Internet, massive multimedia data including texts, images, and videos are increasing explosively and available for interactive applications over the Internet. At the same time, more and more attention has been paid to aiming at fast retrieval from massive multimedia databases. Hash-based Approximate Nearest Neighbor (ANN) search is a technology that ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.06993 شماره
صفحات -
تاریخ انتشار 2017